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Abstract: This paper approaches the methodology for determining the neutral surface of 

a layered composite. It is to be neglected the spins effect on normal sectional unit load, 

respectively the influence of the specific linear movements when calculating the bending 

and torsion of the unit moments. It enables the distribution of tasks specified in the layers' 

level for evaluating maximum stresses and comparing them to the existing structure of the 

materials existing in the structure. 
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1. INTRODUCTION 

 

The safety of the operation of the industrial mechanical equipment in general, and of those performing the 

processing of various chemicals, under difficult conditions in terms of the action of operating parameters 

(pressure, temperatures and chemical and/ or mechanical aggressiveness), in particular, involves a careful 

attention in choosing the materials compatible to practical cases in the design, manufacture and maintenance, as 

technical and legal decision-makers. 

 

From the category of the mechanical structures under pressure take part implicitly flat or curved sheets, made of 

metallic one - piece materials or laminated composites whose layers are joined with adequate adhesive suitable 

for concrete mechanical and thermal strains [1 - 12]. 

 

In the correct assessment of the states of stress and strain in the structure of plates and the identification of the 

most requested referral areas whose intensities should be below the normalized/ standardized values requires 

finding their neutral position of the surface. The difficulty is distinguished more difficult for laminated 

composite sheets rather than the sheets made from the same material [13 - 15]. 

 

This paper aims to establish the position of the neutral surface section of an anisotropic or orthotropic plate, 

structural or constructive (reinforcing nervures, for example). In this way we can achieve a true assessment of 

the strain states (stresses and strains), both for static actions, and the dynamic ones [17]. In this way: 

- The specific linear deformations and the rotations of a volume element of an anisotropic plate with 

elastic, mechanical and thermal properties dependent, meanwhile, on the position in the cross section, 

are to be considered; 

- Sectional efforts are written expressions (normal and shear unitary forces), as well as bending and 

torsional unitary moments; 
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- It is to be neglected the effect of the flexures in the structure of the expressions of the normal unitary 

strengths, respectively of the specific linear strains during the unitary bending and twisting moments; 

- Taking into account the previous acceptation by cancelling the appropriate expressions and introducing 

a convenient change of a thickness variable on the considered plate regarded it is to be deducted the 

relation for the calculation of the position of the neutral surface, along an axis of the reference system; 

- Exemplifying is produced on a structure with one or more layers, specific to layered composites; 

- Based on the study made, simplifying assumptions of calculation are taken into account, in the elastic 

fields of strains, for thin plates. 

 

The designer analysing a particular type structure of laminated composite boards must adopt a certain value in 

the calculation necessary to estimate the states of stress and a convenient arrangement of layers, linking them to 

the operating parameters. Relations are established for calculating the loads distributed across layers (uniform 

tension/ compression forces, shear forces, respectively forces of the uniform bending and torsion moments) and 

of the maximum tensions which compares with the allowable stresses / resistances of the present materials. 

Ensuring bearing capacity of the structure imposes a certain convenient order of the composite layers. 

 

 

2. SIMPLIFYING CALCULATION ASSUMPTIONS 

 

The economy of materials, and the safe operation of the mechanical construction and, require a careful analysis 

of stresses states and strains developed under the action of external loads. Therefore, the result of the calculations 

depends essentially on the adopted simplifying assumptions [18 - 20]: 

- Laminated thin plates are considered to be of uniform/constant thickness. 

- Laminated plates consist of orthotropic parallel laminae with intimate contact (glued among them, 

resulting in their deformation equality - displacements and rotations - at interfaces level. 

- No slip occurs between layers. 

- The deformations produced are small ( the arrow of the plate should be below 20 % of its thickness [18 

- 21]; the length of the neutral fiber remains virtually unchanged at bending strain, being neglected in 

relation to the unit. 

- Each layer has a linear elastic behaviour, respecting the law of R. Hooke. 

- Any of the layers is in a state of flat stress (the normal stresses on planes parallel to the neutral surface 

of the plate is to be neglected relative to the others). 

- Keep the A. E. H. Love - R. G. Kirchhoff hypothesis (undistorted surface normal remain normal to 

these after their deformation - assuming the hypothesis of the straights normal). 

- Strains and stresses overlap algebraic to evaluate overall stresses. 

- It is assumed that initial stresses (internal /interior) are missing. 

- Do not take into account the speed of straining of the plates. 

 

 

3. THERMAL AND MECHANICAL STRESSES AND STRAINS IN A LIGHT/ (LAYER OF A 

LAYERED COMPOSITE) 

 

Note: It is accepted the case when elastic and thermal characteristics of the material - longitudinal and transverse 

modulus, the coefficient of transverse contraction and the thermal deformation factor –are dependent on 

temperature. 

 

In terms of the request of the elastic area (by accepting R. Hooke's law), the linear and angular strains for an 

orthotropic structure, is presented in the form [16]: 
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 , ,x y x y x ye G T z                                                 (3) 

 

holds for correspondence [18, 22 - 25]: 

 

.x y y xE E                                                                        (4) 

 

The equalities (1) - (3) can be put into form: 
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 , .x y x y x yG T z e                                                                               (7) 

 

According to the hypothesis of straight normal, there can be written the rules for any fiber located at some 

distance from the neutral surface of the plate [16, 18]: 

 

;x x xe z     ;y y ye z    2 ;x y x y x ye z                                     (8) 

 

;x u x         ;y v y       ;x y u y v x                                    (9) 

 
2 2 ;x w x        

2 2 ;y w y          2 ,x y w x y                      (10) 

 

, ,u v w  stand for the displacement points of the board along the axes of the reference system O x y z, attached 

to the plate. 

 
Fig. 1. Uploading a volume element of a rectangular flat plate [16]. 

 

Note: Curves 
x , 

y and 
x y  may be disregarded in value compared to other quantities so that: 

x xe  ; 

y ye  ; 
x y x ye  .

  
Also, in writing Equality (9) was held that [16]: 

 

   2w x u x      ,     2w y v y        and 

 

       w x w y u y v x                   , 
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which is why they remained in the study forms provided. 

 

From Equalities (5) - (7) are set the expressions of the normal elastic efforts (
xN , 

yN ) - normal unit forces - 

and shear (
x yN ) - cutting unit forces -, or respectively of the moments unit of bending ( ,x yM M ) and unit 

the twisting moments unit (
x yM  ) - Figure 1 - [16]:  
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The elastic thermal characteristics and temperature dependence of its position in the lamina volume/ layer. 

 
Fig. 2. The neutral position of the surface of the lamina. 

 

Since the modules of longitudinal elasticity ( ,x yE E ), the coefficient of transverse contraction ( ,x y  ) and 

the factors of thermal deformation ( ,x T y T  ) are temperature-dependent,  , ,T T x y z in turn, based on 

the coordinates of the points belonging to the volume of the composite, the corresponding sizes of the Equality 

(11) - (16) have the form [16]: 
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the integration limits are given in Figure 2 (respective dimensions are relative to the neutral surface of the 

lamina). In the previous relations the following notations are used:  1 1 , ,D x y z ,  1 2 , ,D x y z  - bending 

stiffness;  2 2 , ,D x y z  -
 
torsional rigidity. 

 

Note: In the preceding expression there have been used notations indicated in Figure 2, considering the whole 

thickness of the lamina represented by the other two dimensions, and measured with respect to mean size of the 

neutral surface thereof. The indicated sizes for the evaluation of the unit forces and of the bending and twisting 

moments can be determined if we neglect the effect of temperature and the place of the volume of the composite 

or not, as appropriate. 

 

 

4. ESTABLISHING THE EXPRESSION OF A NEUTRAL SURFACE OF THE LAMINA AND OF A 

COMPOSITE MULTILAYER 

 

Note: For small deformations, the following equalities (11) - (13) will be neglected in evaluating the influence of 

curvature and the normal unit forces xN , 
yN  well as of the longitudinal and shear unit 

x yN ,
y xN , as a result 

1 1 1 2 2 2 3 3 0A A A A    . Likewise in the Equalities (14) - (16) are kept only the influences offered by 

the corresponding curves. 
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4.1. The expression of the neutral surface of the lamina/ layer 

 

As noted in the above, the relations in question shall be taken into discussion the two portions of the overall 

thickness of the lamina/ layers, from one side and the other of the neutral surface. To determine this position, in 

the cross - sectional axis Ox, provided 
1 1 0A   [16]: 

 1 0 .
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x x yE z d z





 


     
                                                            (33) 

Analysing the structure of expressions (10 - 16) it is found easily that the equality (11) eliminates curvature 

influence on normal and shear forces unit. 

 

The following correlation is inserted: 

 

0 ,i jz z                                                                                (34) 

 

so that ( for 
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Equality (36) allows determining the share 
i j  under this form: 
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Note: If the elastic modulus is independent of the temperature and the film thickness, the Equality (36) is 

presented in the form: 

 

 0,5 0 ,x j j i jE                                                                  (38) 

 

from which we deduce: 

 

0,5 .i j s j j                                                                    (39) 

 

For the case of a laminated metal board with a symmetrical structure in terms of mechanical characteristics, it 

can be accepted a function of the following type for the module of longitudinal elasticity: 

 

     2, ,x E EE T z a T z b T                                                 (40) 

 

in which the parameters indicated in the equality 2, may have these forms: 

 

    24 ;E M m ja T E E       ,E mb T E                                   (41) 
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in which ME , mE  the modules of longitudinal elasticity is present on the outer surfaces of the board and at its 

center ( M mE E ), in view of the developed positive influence the lamination process. The modules of 

longitudinal elasticity may be dependent on temperature. 

 

The phrases above adapt correspondingly to the geometrical elements located in the cross section along the 

axis O y , in which case it shall be considered the longitudinal elastic modulus
yE .  

 

4.2. The term of the neutral surface of a laminated composite  

Note: In the following expressions one shall not take into account the presence of adhesive layers. These may be 

placed in the appropriate adjustment study. 

 

A three-layer composite 

Based on the same logic analysis, by cancelling the expression of the size A11, you can reach to: 

 

 3 1 1 1 2 1 3 2 1 2 2 2 3 ,i c I I I I I I                                               (42’) 

 

in which: 

 

 
0 1

1 1 1 1 1 0 0

0

1 ;

z

x x yI E z d z      
        

0 2

0 1

1 2 2 2 2 0 01 ;

z

x x y

z

I E z d z      
       

(42’’) 

 

 
0 1

2 1 1 1 1 0

0

1 ;

z

x x yI E d z     
         

0 2

0 1

2 2 2 2 2 01 ,

z

x x y

z

I E d z     
              (42’’’)  

 

 
0 3

0 2

1 3 3 3 3 0 01 ;

z

x x y

z

I E z d z      
   

0 3

0 2

2 3 3 3 3 01 ,

z

x x y

z

I E d z     
               (43) 

 

in which: 

 

0 3 1 2 3 .l l lz                                                                                  (44’) 

 

Transforming the integral into a sum you can reach at: 

 

 
    

    

    

  

3
2 2

0 0 1
1

3 3
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1

3

0
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3

1

1

2 1

1 2

           ,

2 1

x j x j y j j j
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x j x j y j j j
j

x j x j y j j j j

j

x j x j y j j
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E z z

E z z

E z

E

 


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









     
   

 

      
   

      
 



    
 









                          (44’’) 

 

In the work [15], for a composite sandwich (three layers) type, it is exposed the expression: 
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 
   
 

2

1 1 2 2 1 2 3 3 1 2 3

3

1 1 2 2 3 3

2 2 2

2
i c

E E E

E E E

       


  

            


     
 ,                    (44’’’) 

 

expression in which 
1 2 3, ,   represents the thickness of the lower, the middle and the higher layer . In case 

2 2 1 1E E      and 
2 2 3 3E E    

 
the equality (42’’’) is reduced to: 

 

 
 

 

2

1 1 3 3 1 2 3

3

1 1 3 3

2 2
.

2
i c

E E

E E

    


 

       


   
                                              (44’’’’) 

 

N - Layers composite 

By generalization is reached: 

 

1 2

1 1

,
n n

i c n j j

j j

I I
 

                                                       (45’)  

 

with the general notations: 
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
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(46) 

 

where
x jE

 
represents the modulus of longitudinal elasticity for the layer  , 1, 2, , .j j n

 
 

This time, the equality (45) can transform into: 
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The total thickness of the composite is determined by the expression: 

 

 0 0 0 1
1 1

,
n n

c n j jj
j j

z z z 


 

    
                                                        (46) 

 

while the thickness of each state is determined by the relationship: 

 

 0 0 1
.j j j

z z


                                                                                 (47) 

 

In the previous expressions it was considered a mean longitudinal elasticity modulus, characteristic of the 

considered layer (Figure 3). 
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Fig. 3. The position of neutral surface of a layered composite. 

 

 

Note: For the comparison of the value/ position of the neutral surface indicated above, under the form (45’) 

deducted by cancelling 
1 1A  size, can be considered the expressions which reflect the cancellation of other sizes 

as follows: 

- Cancellation of expression 
1 2A  [equality (22)]: 
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                         (48)  

 

- Cancellation of expression 
2 2A  [equality (23)]: 
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with consideration of correspondence: ;x j y j y j x jE E      

- Cancellation of expression 
3 3A  [equality (24)]: 
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   (50) 

 

Note: The check previously suggested takes into account the real fact that the assessment of the physical real-

elastic is extremely difficult. 

 

 

5. CONCLUSIONS 

 

Based on the assumption of neglecting the effect of spin the cross-section of a composite laminated board in the 

formulation of the mathematical unit normal and shear forces, on the one hand, and the failure influence of 

specific linear strains in the expressions of uniform moments of bending and torsion, on the other hand, there are 

established appropriate expressions to determine the position of the neutral surface. It is justified the analysis for 

composites whose cross sections have layers with different mechanical and elastic properties uncharacterized by 

a "mirror" behaviour (state in which the symmetrical positioning of layers determines the cross-sectional area in 

the mid transversal section). 

 

It is created the conditions of sharing correspondingly the referred burden at the level of the component layers 

and the possibility of assessing the actual maximum tensions that can be compared to the permissible 

characteristic construction materials. In this way it offers the possibility of organization the layers 

correspondingly, so as to ensure safe operation technique, even with the change of the existing materials in the 

analysis. In a following paper there will be specified the  expressions of the distributed tasks in various practical 

situations, in which case it is possible to analyse delamination layers [26], and respectively the evaluation of the 

bearing capacity of the adhesives used, effectively neglected in the  study, but whose existence allow 

consideration of the board as a monolithic structure. 
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