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Abstract: A previous paper stated the method of determination of the neutral surface of a 

composite monolithic, laminate composite, organizing some of the component layers, go to 

the method of distribution of tasks developed in one given case. This regard illustrates 

several possible options of which results can enable a proper assessment of the maximum 

strains and alignment layers, ensuring a maximum lifting capacity. The study can be 

developed to optimize the organization of layers, depending on the practical purpose of 

using the composite structure (mechanical, thermal and / or sound). 

 

 

Keywords: laminated composite, sectional loads, mechanical and thermal strains 

 

 

 

1. INTRODUCTION 

 

The minimum consumption of building materials in mechanical structures, usually, but even more in the 

equipment of great burden, such as those in the process industries, represent a special interest both for the 

researchers in the field, and for manufacturers and users. Substances are present here, in general, with high 

working parameters (pressures, temperatures) and high chemical and / or mechanical aggressiveness. These 

aspects are to be taken into consideration since the projection, in different stages of their work, as when in 

operation, for metallic materials as well as for composite materials [1-9]. In addition to fulfilling the safety of 

technical regulations, the authors respond responsibly with regard to the general or specific costs as well [10-11]. 

It was a key reason for which in a previous work of the authors [12] it was studied the method of determining the 

neutral position of the surface of a laminated composite, generally with non-symmetrical alignment or a 

symmetrical (mirrored) one. In this case the sharing variants of loads allotted to component layers are exposed, 

for static or dynamic applications [13-16]. Such an analysis allows finding, finally, the effective strains 

developed in layers, and the possibility of comparing the maximum tensions / resistances, to adopt a reasoned 

decision for the studied case. 

 

Developing the study of the presence of the outside strains on a monolithic laminated board, in this paper, we 

consider the following aspects: 

- it is accepted as known the position of a neutral surface of a board with a given structure, geometric and 

material; 

- accepting the conditions of existence of the same specific linear deformation for all layers, these will be 

subjected to proportional loads with axial rigidities in longitudinal and transverse direction; the analysis takes 

into account a constant thickness of each layer, and thus, the same cross-sectional area; the longitudinal elasticity 

modules and the rigidities of the layers are accepted constant throughout the thickness of the layer concerned; 
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- considering the same spins of the layers under the action of uniform bending moments, accepting the position 

of the neutral surface or not, based on the values attributed to each layer, the expressions of the corresponding 

tensions are deducted: it proposes three assessment alternatives of the strains developed; 

- the same spins are under consideration when allotting the unitary moments of twisting on the layers of a 

composite, namely to establish formulas for determining the torsional tensions which overlap with the other 

values of the strains, of a different nature, under the request of an elastic global strain; 

- establishing the methodology for allotting the uniform shearing forces in the plans layers and the normal one to 

their neutral surfaces. 

 

 

2. THE DISTRIBUTION OF AN AXIAL FORCE ON A LAMINAE/LAYERS OF A LAYERED 

COMPOSITE 

 

It is considered a longitudinal or transverse total force that can develop strain of stretching or compression, 

irrespective of the position of the neutral surface of the composite in the following (Figure 1). The force in 

question may be allotted in proportion, considering the same values of the specific linear strains of all laminae. If 

a board is loaded biaxially it is considered the following expressions: 

 

 
Fig. 1. The distribution of unidirectional force on the strata of the composite. 

 

- Along the axis O x (equation (1)): 

 

     1 1 1 2 2 2x x x x x x x x j x j x jF E A F E A F E A           

 
1 1 1

,
n n n

x n x n x n x j x j x j a x x j x j

j j j

F E A F E A F E A
  

                               (1) 

 
in which case the distributed forces on the component layers have the relationships (equation (2)): 

1 1 1

1

;
n

x x x x j x j a x

j

F E A E A F


  
     
   

    2 2 2

1

;
n

x x x x j x j a x

j

F E A E A F


 
    

 
    ...... 

 ... 
1

;
n

x j x j x j x j x j a x

j

F E A E A F


 
    

 
  ....

1

.
n

x n x n x n x j x j a x

j

F E A E A F


 
    

 
     (2) 

 

Therefore, the normal strains created in each layer along the axis is determined with the relationships (equation 

(3)): 
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1 1

1

;
n

x x x j x j a x

j

E E A F


  
    
   

       2 2

1

;
n

x x x j x j a x

j

E E A F


  
    
   

   ... 

1

;
n

x j x j x j x j a x

j

E E A F


  
    
   

   ...  
1

,
n

x n x n x j x j a x

j

E E A F


  
    
   

       (3) 

 
which may be of stretching or compressing, as appropriate. 

 

- Along the axis O y (equation (4)): 

The force acting on each layer, along the axis O y, produces the  specific linear deformation: 

 

     1 1 1 2 2 2y y y y y y y y j y j y jF E A F E A F E A           

 
1 1 1

,
n n n

y n y n y n y j y j y j a y y j y j

j j j

F E A F E A F E A
  

                     (4) 

 

deducting, further, equation (5): 

 

1 1

1

1

;
y y

y a yn

y j y j

j

E A
F F

E A



 


         

2 2

2

1
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y y

y a yn

y j y j

j

E A
F F

E A



 


...      

1

;
y j y j

y j a yn

y j y j

j

E A
F F

E A



 


 .... 

1

,
y n y n

y n a yn

y j y j

j

E A
F F

E A



 


                              (5) 

 

respectively the normal strains (tension or compression) (equation (6)): 

 

1 1

1

;
n

y y y j y j a y

j

E E A F


  
    
   

      2 2

1

;
n

y y y j y j a y

j

E E A F


  
    
   

    ... 

1

;
n

y j y j y j y j a y

j

E E A F


  
    
   

  ... 
1

;
n

y n y n y j y j a y

j

E E A F


  
    
   

          (6) 

 

Note: The equivalent modules of the longitudinal elasticity along the axes Ox, respectively Oy, have the 

expressions (equation (7)): 

 

1 1

;
n n

e x x j x j x j

j j

E E A A
 

        
1 1

.
n n

e y y j y j y j

j j

E E A A
 

                  (7) 

 

In the previous relationships were also noted the (longitudinal) rigidities when streching / compressing the 

elements noted 'j' , respectively the equivalent (longitudinal) rigidities characteristic of the same type of strain: 

 

- Along the axis O x (equation (8)): 
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;x j x j x jE A       1; ;j n       
1

;
n

e x n x j x j

j

E A


                          (8) 

 

- Along the axis O y (equation (9)): 

 

;y j y j y jE A    1; ;j n          
1

.
n

e y n y j y j

j

E A


                          (9) 

 

 

3. DISTRIBUTION OF UNIFORM BENDING AND TWISTING MOMENTS ON THE LAMINAE OF A 

LAYERED COMPOSITE MONOLIT 

 

A. The distribution of the unitary bending moments 

Variant I 

In terms of the same rotation (curvature) of the surfaces of composite and laminae, knowing the position of the 

neutral surface [12, 13] and the arrow 'w' of the board, set for different board types and modes of support, 

strained statically or dynamically [17-21], it derives the following expressions for the uniform bending moments: 

 

 
Fig. 2. The neutral position of the surface of the lamina. 

 

- Along the axis O x (equation (10)): 

 

     1 1 1 2 1 ,x j x j x x j y T x jM D D M                                       (10) 

 

where (Figure 2, equations (11)-(13)): 

 

        3 3

1 1 3 1 ;x j x j s j i j x y y xj j
D E          

  
                                (11) 

 

          3 3

1 2 3 1 ;x j x j y x s j i j x y y xj j j
D E            

  
                               (12) 

 

 
 

   
 2 2

1

1
.

2 1

x j x j y x j y j

T x j m j s j i j

x y j y x j

E
M T

  
 

 

   
 

    
 

                                   (13) 

 

The normal tensions, stretching and compressing on the two surfaces of the layer have the form (equation (14)): 
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26 .x j x j jM                                                                 (14) 

 
- Along the axis O y (Equations (15)-(18)): 

 

     1 2 2 2 2 ,y j y j x y j y T y jM D D M                                          (15) 

 

   1 2 1 2 ;x j y jD D                                                               (16) 

 

        
          

3 3

2 2

3 3

  3 1

3 1 ;

y j y j s j i j x y j y x j

y x j x j s j s j x y j x y j y x j

D E

E

   

     

       
 

        
 

                               (17) 

 

 
 

   
 2 2

2

1
.

2 1

y j y j x y j x j

T y j m j s j i j

x y j y x j

E
M T

  
 

 

   
 

    
 

                               (18) 

 

The normal tension, stretching and compressing the two surfaces of the layer have the form (equation (19)): 

 

26 .y j y j jM                                                                (19) 

 

Note: In the above it was found the average temperature 
m jT  on the layer thickness. 

 

Variant II 

Considering the position of the neutral surface of the composite board, established based on the above 

methodology, under the same curvature conditions, uniform bending moments can be distributed as follows: 

 

- Along the axis Ox: 
Note: In the following it is considered neutral surface position of the composite [12, 13], the distribution of the 

total bending moment being made based on the rigidity of the assembly and of each layer for the same rotation 

amount of the la Assuming a layered composite monolith (with layers glued intimately with each other, without 

slip under the action of external load / loads) and of  unique spins , it is expressed the following distribution, for 

the axis O x  (taking into account the flexural rigidity of the layers, with unitary wide and a height 
j ) [16]: 

 

     

 

1 1 1 2 2 2

1 1 1

,

x x x x x x x j x j x j

n n n

x n x n x n x j x j x j x x j x j

j j j

M E I M E I M E I

M E I M E I M E I
  

       

 
      

 
  

                        (20) 

 
so that (equations (20)-(22)): 
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1 1 1

1

;
n

x x x x j x j x

j

M E I E I M


  
     
   

  2 2 2

1

;
n

x x x x j x j x

j

M E I E I M


  
     
   

  …     

(21) 

 

1

;
n

x j x j x j x j x j x

j

M E I E I M


  
     
   

  ....
1

.
n

x n x n x n x j x j x

j

M E I E I M


  
     
   

    (22) 

 

Note: The moments of inertia 
x jI from the previous relationships are calculated relative to its own axis of 

symmetry   0x jI  , also taking into account J. Steiner's relationship [22]: 

 

   2 3 2 2 2

0      12 0,5 0,5 6 ;x j x j j x j j j x j j j x jI I d d d                              (23) 

 
The above equalities can be written by considering the flexural stiffness of the layers (equations (23)-(25)): 

 

1 1 1 ;x x xE I    
2 2 2 ;x x xE I   …. ;x j x j x jE I    …  ;x n x n x nE I                     (24) 

 

respectively the bending stiffness equivalent to that of the laminated board: 

 

1

;
n

x x j x j

j

E I


                                                                    (25) 

 

In the previous relationships with 
x jd were noted the distances from the neutral surface of the composite to the 

layer j , in  case of the appropriate section. Typically, the layers' thicknesses are identical ( x j y j j    ) 

in the cross sections of the composite. If the longitudinal elasticity modules are different, the neutral positions of 

the surfaces in the two cross sections are different, so that the analysis can be done distinctly. 

 

Normal stresses can be evaluated with expressions of the form (14). 

 

Fig. 3. Distribution of bending moment on the composite layers. 
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- Along the axis O y (equations (26)-(28)): 

 

1 1

1

1

;
y y

y yn

y j y j

j

E I
M M

E I



 


     

2 2

2

1

;
y y

y yn

y j y j

j

E I
M M

E I



 


....                          (26) 

 

1

;
y j y j

y j yn

y j y j

j

E I
M M

E I



 


  .... 

1

.
y n y n

x n yn

y j y j

j

E I
M M

E I



 


                   (27) 

 

Note: Given that, in general, the thicknesses of the layer are equal in the directions O x and O y , it is inferred 

that: 
x j y j jI I I  ,

x j y j jd d d  . Since the modules of longitudinal elasticity can be different then, 

x j y j   where: 

 

1

.
n

y y j y j

j

E I


                                                                         (28) 

 
The tensions developed along the axis O y can be calculated with relations of the form (19). 

 

Note: For each layer of the composite stretching tensions occur on the lower surface, and compression ones on 

the the upper one, regarding  the purpose of the uniform bending time (Figure 3). 

In accordance with [16] in the composite layers develop uniform forces and normal proper tensions, according 

with the intensity of the uniform bending moment, with expressions like: 

 

- Along the axis O x 

 

1

;
n

x j x j x j j j x j j

i

F M E d E I



 
     

 
       ;x j x j jF                         (29) 

 
- Along the axis O y: 

 

1

;
n

y j y j y j j j y j j

i

F M E d E I



 
     

 
     .y j y j jF                 (30) 

 

Note: the normal tensions calculated with the equalities (29) and (30) constant on the thickness of the respective 

layer, add to those developed by uniform bending moments they produce. 

 

Variant III: 

Note: In the following we will consider the position of the neutral composite laminated surface - Figure 4 - 

located within the pale of the element j , characterized by the quotas s c and i c  of the board with a total 

thickness .c The following inequalities are noted (equation (31)): 
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1

1 1

.
j j

u s c u

u u

  


 

                                                                 (31) 

 

 

 

 

 

 

 

 
Considering the meaning of the uniform bending moment M in Figure 5, it is accepted the hypothesis of 

equivalence of this with the distribution of some normal streching tension (width 
i c ) and of compression 

(width 
s c ), resulting in the equality (equations (32)-(38)): 

 

 2 2

1 1 2 3s c n i cM                                                                   (32) 

 
or with regard to the correspondence: 

 

1 1 2 ,n s c i c                                                             (33) 

 
getting to: 

 

   3 3

1 13 ,s c i c s cM        
 

                                      (34) 

 
respectively: 

 

 

Fig. 4. Loading of the element "j" with normal interfacial tensions. 

 

Fig. 5. The distribution of bending moment on the composite layer. 
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 3 3

1 1 3 ;s c s c i c M        
 

    2 1 1 .n i c s c                       (35) 

Note: in the equality (33) it was not taken into account the sign of the tensions involved in the equality. 

Based on the corresponding triangles congruence the following expressions are deducted for the tensions 

developed at the interfaces among the layers of the composite, written as: 

 

     3 3

1 2 2 1 1 1 1 11 1 3 ;s c s c s c s c i c M                     
 

            (36) 

 

 

2

2 2 3 1 1 1

1

2
3 3

1

    1

1 3 ;

u s c

u

u s c s c s c i c

u

M

    

    





  
       

   

  
           

   





                            (37) 

…………………………………………………………………… 
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   
  3; 2 ;p j               (38) 

 

The tensions on the inferior side of the element  1j   , namely the upper one of the element ,j equation (39) 
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           

   





                                   (39) 

 

Note: It is noted from the above equality the possibility of assessing the normal tension developed at the top of 

the element / layer (the compression one, as referred to above). 

 

Taking into account Figure 4 the following relationships are deducted (equation (40)):  

 

    
1

1
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j
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u

   




 
   

 
                             (40) 

 
From the contents of Figures 4 and 5 it is easily set the relationship for the calculation of the tension developed 

on the lower surface of the element j  (equation (41)): 

 

 2 1 2 1j j j j                                                          (41) 
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and further ((equations (42) – (45)): 
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                         (42) 
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    3; 1 ;k j n                (44) 

 

  11 2
;nn

 


   3 3

2 3 .n i c s c i c M                                   (45) 

 
Note: The bearing capacity of the composite is accepted when the maximum tension is below the / allowable 

tension/resistance of the material from which the layer in question is carried out. 

 

B. The distribution of uniform twisting moments 

For a moment (total) twist / torque 
TM  (acting in a plane x O z - Figure 6) on a layered composite it is 

considered the same rotation of all layers so that (equation (46)): 
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          (46) 

 

so that the uniform twisting moments allotted to a layer is denoted by the phrase  ; 1,j j n  has the 

expression (equation (47)):  

 

3 3

1

,
n

x y j j j j j T
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M G b G M  
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 
      

 
                                                 (47) 

 

where it  was used the coefficient dependent on the geometric simplex 
jb  in this case accepts the 

value 0,333  , and 
3

j jb G    representing the torsional rigidity of the layer, to which belongs the torsional 

modulus of elasticity jG  [22]. As a result there develops the maximum shear tensions (equation (48)) [22]: 

 



Journal of Engineering Studies and Research – Volume 22 (2016) No. 1                                        60 

 
 

 3,0 ;y x m a x x y j jM b      2,23 .z x m a x x y j jM b                           (48) 

 

 

 

4. DISTRIBUTION OF CROSS-CUTTING FORCES (SHEAR) ON THE LAMINAE/ LAYERS OF A 

COMPOSITE 

 

- Along the axis O x  (along the layers of the composite) 

  

Variant I 

Accepting an identical rotation of the layers of the monolithic composite, the unitary force 
x T xT T b  

acting in a plane x O z  (along the axis O x - Figure 6, the uniform force 
xT  is distributed according to the 

equality (equation (49)) [16]: 

 

   1 1 1 2 2 2x xT G T G         
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,
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j x j j n x n n x j j

j

T G T G T G  


 
        

 
                    (49) 

 

where 
jG is the modulus of transverse (shear) elasticity of the element / layer j  (Figure 6) 

(  1, , ;j n j -the thickness of the element j . From the equalities (49) follow easily the uniform forces 

distributed in each layer: (equation (50)). 
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                                                     (50) 

 

 

Fig. 6. Distribution of shear forces on the composite layers. 
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respectively the  equivalent model of cross-elasticity of the composite (equation (51)) [16]: 

 

1 1

.
n n

e c j j j

j j

G G  
 

   
    
   
                                                           (51) 

 
On the basis of the above shear strains can be evaluated from each layer of the composite, with a uniform 

distribution over the entire cross-sectional area (situated in the plane x O z - Figure 6, equation (52)): 

 

 ; 1, .j x j x jT j n                                                        (52) 

 

Variant II 

The paper [16] considering the distribution of a total cutting / (shear) force in a plane x O z  (Figure 6) presents 

the following calculation relation [D. I. Juravski's formula (1821-1891)] of shear tensions along the dimension / 

width b with a maximum value in the middle of it (equation (53)): 
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                              (53) 

 

where it was appealed to the previous notations. It easily appears that 1,5 .j x j x     For a well argued 

study it is recommended comparing the results offered by earlier formulas to take an appropriate decision to the 

case and ensure the normal functioning of the structure analyzed. 

 

- Along the axis O y  (in a transverse direction to the layers of the composite) 

 

For a composite of a sandwich type ( with three layers) paper [16] gives the following methodology for 

evaluating the maximum shear strains at the interfaces between the outer layers 
1 2 and 

2 3 respectively the 

one from the middle layer, under the action of a total force oriented along the axis O z  (Figure 6, equation (54)). 

 

 1 2 1 2 3 ;T zT E b E I           2 2 3 ;T zT E b E I                      

                                               (54) 

  2 3 2 3 3 ,T zT E b E I         

 

in which these measures were used (equation (55)-(57)): 
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  

  

   
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3

2 2 1 2 3 3 3 3 1 2 32 12 2 ;i c i cb E E E                       
  

   (55)       

 

 1 2 1 1 1 2 ;i cE b E           2 3 3 3 1 2 3 2 ;i cE b E                             (56) 
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   2

2 2 1 2 3 3 1 2 34 2 ;i c i cE b E E                   
 

                   (57) 

 
Note: The values of shear strains, determined by the equalities (52) are inscribed on a parabolic graph [16]. 

 

If it is found that 
2 2 1 1E E     and 

2 2 3 3E E      , the shear strain is constant over the entire 

thickness of the middle layer of the composite, and equal to the values in the areas of separation of the outer 

layers, so that (equation (58)) [16]: 

 

 1 2 2 2 3 1 2 32 2 .T zT b                                                      (58) 

 
Other notations: 

,x j y jA A   cross-sectional area along the axis O x or O y , corresponding to the layer  1...j j n ; 

1 1 1 2 2 2, ,D D D  flexural rigidity; ,x j y jE E   modules of longitudinal elasticity of the layers j , along 

two reference axes ,x j y jF F  ; the forces spread across the layers, along the axes of reference ,x j y jI I  ; 

the moments of inertia of the rectangular sections with width and height equal to the current layer 

unit j ; ,x j y jM M   uniform bending moments relative to and axes O x and ;O y  
m jT  the average 

temperature on the thickness of the composite; w- the arrow of the board    ,x y j y x j   ; the transverse 

contraction coefficient characteristics of the layer j ; O x and ;O y
j  the thickness of the layer ;j  

, ,j i j s j     the thickness of the layer ,j  respectively the distances measured of the neutral surface of 

the lamina , ,c i c s c    ; the thickness of a laminated composite respectively the distances measured from 

the outer surfaces to the characteristic neutral surface; ,x y    Specific linear deformations along the axes of 

reference considered ,x j y j   ; the longitudinal stiffness of the layer j along the axis ,O x respectively 

;O y ,e x n e y n   the longitudinal stiffness equivalent of the monolithic laminated board; 

   2 2 2 2,x yw x w y           the curves of the board along the axes O x  and .O y  

 

 

4. CONCLUSIONS 

 

Expanding the study determining the neutral position of the surface of a monolithic layered composite, in the 

contents of the present work it is going to be shown the methods of allotting the uniform shear forces or the 

normal ones, respectively of the uniform bending or twisting moments. As noted in the analysis presented above, 

it is taken into account some working hypothesis, as the same specific linear strains, respectively spins, of each 

layer, in accordance with the composite itself. Depending on the types of plane boards, of various external loads 

and modes of support to their specific contours, it is determined the normal uniform forces or the uniform 

bending and twisting moments. Further, the form stability of the board itself can be analyzed, or of the single 

layers, as well as the influences manifested. The carrying capacity of the layers, respectively of the intrinsic 

board is determined by the maximum allowable strain values compared with the allowable values, or the 

structural stability. It is noted that based on the results found, one may move to a proper organization of the 

layers or to an optimization imposed by the technical and economic nature. 
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