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Abstract: The present work is devoted to the buckling study of non-homogeneous fixed- 
fixed beams with intermediate spring support. The stability issue of these beams leads to 
three-point boundary value problems. If the Green functions of these boundary value 
problems are known, the differential equations of the stability problems that contain the 
critical load sought can be turned into eigenvalue problems given by homogeneous Fredholm 
integral equations. The kernel function of these equations can be calculated from the 
associated Green functions. The eigenvalue issues can be reduced to algebraic eigenvalue 
problems, which are subsequently solvable numerically with the use of an efficient algorithm 
from the boundary element method. Within this article, the critical load findings of these 
beams are compared to those obtained using commercial finite element software, and the 
results are in excellent correlation. 
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1. INTRODUCTION 
 
Buckling is a long-known phenomenon that can occur for various engineering structures [1, 2]. Since Euler’s 
pioneering work, it is clear that buckling can as well happen to straight columns under compressive loads [3]. In 
the fields of mechanical, structural, and aeronautical engineering, buckling of beams subjected to compressive 
load is a prevalent problem. When a straight beam is loaded with an axially compressive force, minor deformations 
occur before reaching a critical load value that can initiate buckling. The calculation of the critical buckling load 
is important for compressed slender members that are in the focus of several researches, including static and 
dynamic, studies. Book [4], for example, is a thorough examination of the theory of elastic stability of continuously 
axially loaded columns, entirely focusing on column buckling. In study [5], the buckling instability of a system of 
three simply supported elastic Timoshenko beams linked by Winkler elastic layers with each beam subjected to 
the same compressive axial force is examined. In article [6], the elastic and geometric stiffness matrices are used 
for beams on an elastic foundation to find the buckling loads and mode shapes. A bunch of support conditions 
(rigid and elastic) are addressed in [7] when the stability of multi-step beams is investigated. The external loads 
can be composed of several forces. The transfer matrix method is used to find the solutions, which are compared 
with finite element findings. Laminated beams are in the spotlight in [8]. Since the model incorporates shearing, 
there are three independent kinematic unknown fields. The typical differential equations are found from a 
variational principle. The buckling loads are gained from the Ritz method by approximating the three fields with 
polynomials. A new numerical method is proposed in [9] for axially functionally graded beams. The related 
buckling differential equations with non-constant coefficients are replaced with linear algebraic equation systems 
to tackle the issue. It is also worthy to mention article [10] where the stability of imperfect stepped beams with 
cracks are studied. The applied method is the distributed line spring technique. Various stress concentration factors 
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are as well investigated. In paper [11], authors deal with the issue of determining the critical load of beams with 
three supports when the intermediate support is also rigid. Using the boundary element method (BEM), they solved 
the eigenvalue issue that yields the critical loads using Green's function of the three-point boundary value problem. 
The first concept of the Green function was published by George Green in 1828. His book [12] presents, discusses, 
and demonstrates how to use the Green function approach to electrostatic issues governed by partial differential 
equations. In article [13], the Green function is explained in terms of three-point boundary value problems defined 
by linear ordinary differential equations. However, application is only given to vibrations. 
 
The main goal of this research is to provide a novel solution to the stability problem of fixed-fixed beams with 
intermediate spring support (FssF, in short). Although the material is linearly elastic and isotropic, cross-sectional 
inhomogeneity can be handled as long as the material distribution varies throughout the cross-section only. The 
article applies the definition and the major properties of the Green function based on [11, 13] to construct it for the 
specified beam problem with two rigid and one elastic support. After that, it is possible to numerically solve the 
integral equation with the boundary element technique [14]. The results are evaluated graphically and are 
compared with finite element (FEM) findings. The correlation is very good.  
 
 
2. MATERIALS AND METHODS 
 
2.1. Governing equations 
Figure 1 shows the considered heterogeneous FssF beam. The cross-sectional geometry of the beam is uniform 
throughout its length. The axis x� of the coordinate system x�y�z� corresponds with the E-weighted centerline of the 
beam. The symmetry plane in terms of geometry and material distribution of the beam is considered to be the 
coordinate plane x�z�. Thus, the modulus of elasticity E satisfies the relation E(y�,z�) = E (- y�,z�). The beam's length is 
L, and the location of the spring support is denoted by b�. 
 

 
Fig. 1. A compressed fixed-fixed beam with intermediate spring support. 

 
Along the beam centerline, we note that the E-weighted first moment Qy�  is zero: 
 
 Qy�  =∫ z�E(y�,z�)dA = 0        (1) 
 
when there is no axial load (N=0), the equilibrium problem of Euler-Bernoulli beams with cross-sectional 
heterogeneity is governed by the ordinary differential equation [15]. 
 

 d4w�
dx�4  = fz�

Iey
         (2) 

 
where w�  represents the vertical displacement of the material points of the beam centerline, fz

� represents the 
intensity of the distributed load acting on the centerline, and Iey is the flexural rigidity [15], defined by the equation: 
 
 Iey =∫E(y�,z�)z�2dA        (3) 
 
It is more convenient to introduce dimensionless variables as: 
 

 x = x�
L

  ,   ξ = ξ�

L
     ,    w = w�

L
   ,                (4a) 
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 y = dw�
dx�

 = dw
dx

  ,    b = b�

L
   .  l= x

L
│X=L=1     (4b) 

 
With these notations, equation (2) becomes: 
 

 d4w
dx4  = fz     ,   fz = L3 fz�

Iey
       (5) 

 
This differential equation is paired with the boundary- and continuity conditions given in Table 1. So, the vertical 
displacements and rotations are zero at the ends, while the displacement, rotation, bending moment are continuous 
at x=b, but the shear force has a jump because of the elastic restraint. 
 

Table 1. Boundary and continuity conditions. 
Boundary conditions 

w(x = 0) = 0,  w(1)(x = 0) = 0  ,  w(x = l) = 0,  w(1)(x = l) = 0    
                  

Continuity conditions 
 

w(x = b - 0) = 0,    w(x = b + 0) = 0  
 

w(1)(x = b - 0) = w(1)(x = b + 0) ,     w(2)(x = b - 0) = w(2)(x = b + 0) 
 

w(3)(x = b - 0) - χw(x = b) = w(3)(x = b + 0) 

 
In the above table, the dimensionless spring stiffness was introduced as: 
 
 χ= K

Iey
L3          (6) 

 
where K is the rigidity of the linear spiral spring at the intermediate support. To find the dimensionless deflection 
w, this time, an integral equation approach is used. This unknown filed is sought by [12]. 
 

 w(x) =∫ G(x,ξ)ℓ
0 fz(ξ)dξ.         (7) 

 
Here G is the Green function. It is uniquely determined for the boundary value problem of differential equation (5) 
and the boundary and continuity conditions of Table 1. 
 
2.2. Buckling problem formulation 
The related differential equation for the heterogeneous beam without distributed load, but under a compressive 
axial force N is: 
 

 w(4) = - Ɲw(2),   Ɲ =  L2N
Iey 

         (8) 

 
This, together with the conditions of Table 1, constitutes an eigenvalue problem for the unknown dimensionless 
buckling load Ɲ, which in the eigenvalue. Substituting - Ɲw(2) for fz in integral equation (7) returns: 
 

 w(x) = - Ɲ∫ G(x,ξ) d2w(ξ)

dξ2 dℓ
0 ξ                   (9) 

 
Deriving it with respect to x and taking into account that the Green function should satisfy the boundary conditions, 
we get a homogeneous Fredholm integral equation [11]:  
 

 y(x) = Ɲ∫ К(x,ξ)y(ξ)dξℓ
0 ,       ∂2G(x,ξ)

∂x∂ξ
 = К(x,ξ)                (10) 
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So, the stability problem is now replaced by the integral equation (10). The kernel function is proportional to the 
Green function, so the next aim is to find it. 
 
 
2.3. The kernel function  
The Green function of the boundary value problem has the following structure [13]: 
 
 
 
 
 
 
 
 
These functions can be found in closed-form using the definition published in [11]. Accordingly, if ξ∊ [0, b], the 
typical functions are sought as: 
 

G1I = �[amI(ξ) + bmI(ξ)]wm(x) ;  x<
4

m=1

ξ

G1I = �[amI(ξ) – bmI(ξ)]wm(x) ;  x>
4

m=1

ξ (12)

G2I = � cmI(ξ)wm(x)
4

m=1

 

 
here wm is the general solution of the homogeneous equation w (4) =0, that is, in details: 
 

 w =∑ amwm = a1+a2x+a3x2+a4x34
m=1      (13) 

  
Thus, there are 12 unknowns. As per the definition, G1I and its first two derivatives are continuous if x=ξ, while 
the third derivative with respect to x has a jump with magnitude 0.5. The remaining 8 equations follow from the 
boundary and continuity conditions of Table 1. In this way determination of G1I, G2I require the solution of two 
inhomogeneous algebraic system of equations. Similarly, if ξ= [b, ℓ], the form of the Green function is: 
 

G2II=∑ [amII(ξ) + bmI(ξ)]wm(x); x<ξ4
m=1  

G2II=∑ [amII(ξ) - bmI(ξ)]wm(x); x>4
m=1 ξ (14)
G1II=∑ cmII(ξ)wm(x)4

m=1

  

 
At this point, the coefficients bmI are already known, so the 8 remaining coefficients can be found, again, from the 
boundary and continuity conditions. So, the Green function for the FssF beam is in hand at this stage. The kernel 
function has the following structure: 
 
 
 
 
 
 
 
     
where: 
 

 К1I(x,ξ) = ∂2G1I(x,ξ)
∂x∂ξ

   ,   К2I(x,ξ) = ∂2G2I(x,ξ)
∂x∂ξ

                                         (16a) 
 

G(x,ξ) = 

G1I(x,ξ)     if x,ξ ∊[0,b], 
G2I(x,ξ)     if x∊[b,l] and ξ∊[0,b] , 

 
 G1II(x,ξ)    if x∊[0,b] and ξ∊[b,l] , 

 
G2II(x,ξ)    if x,ξ ∊[b,l]. 

(11) 

К(x,ξ) = 

К1I(x,ξ)     if x,ξ ∊[0,b], 
К2I(x,ξ)     if x∊[b,l] and ξ∊[0,b] , 
К1II(x,ξ)    if x∊[0,b] and ξ∊[b,l] , 
К2II(x,ξ)    if x,ξ ∊[b,l]. 

(15) 
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 К1II(x,ξ) = ∂2G1II(x,ξ)
∂x∂ξ

  ,    К2II(x,ξ) = ∂2G2II(x,ξ)
∂x∂ξ

                          (16b) 
  
Now the critical load can, for example, be calculated using the boundary element technique following the 
description of book [14]. 
 
 
3. RESULTS AND DISCUSSION 
 
The numerical results are shown in Figure 2. Parameter b identifies the location of the middle spring support. It is 
enough to assess the interval [0, 0.5] because the end supports are identical. The other variable is �Ɲcrit/π, that is 
proportional to the critical load. The beam acts as if it were a fixed-fixed beam when χ =0. If χ tends to infinity, 
the beam behaves as if it were a fixed-fixed beam with intermediate rigid roller support [11]. The typical curves 
are all nonlinear in the figure. The buckling load has a maximum at b=0.5, and this property is independent of the 
spring stiffness. On the other hand, greater spring stiffness means stiffer intermediate support, that makes the 
structure capable of bearing greater loads. Comparing the most distant results, i.e., when b=0.5 and K is zero or 
tends to infinity, it can be concluded that the difference between the allowable load can increase by 86% which 
indicates that the support stiffness really has an impact on the structural behavior. 
 
The critical load values obtained from the boundary element approach are verified using finite element analysis 
with commercial software. Two models have been created; a 2D model with homogeneous cross-section where 
the steel material is used and a 3D model with heterogeneous cross-section, made up of 3 vertical layers as shown 
in Figure 3. The layers are perfectly bonded, and buckling was restrained to the plane 𝑥𝑥��̂�𝑧. The typical data: E1 = 
2e5 N/mm2 and E2=7e4 N/mm2 are the Young’s moduli of the steel and aluminum material. It is simply assumed 
that a=c= 10 mm, a1= a2=a/3, the length L of the beam is 100 mm and the stiffness of the spring is K=33 333 
N/mm. For all the simulations, the spring support has two degrees of freedom (translation along �̂�𝑧 axis and rotation 
about 𝑦𝑦� axis. 
 

 
Fig. 2. Relationship between �Ɲcrit/π and spring support location. 

 
If the beam is homogeneous steel, 
 

 Iey = IE1= ac3

12
E1 = 104

12
*2*105 = 1.6667*108 N/mm2     (17) 

 
 χ = K

Iey
L3 = 33333

1.6667*108 *1003 = 200     (18) 
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If the beam is heterogeneous, then, 
 

 Iey = ac3

12
�2*E1+E2

3
�  = 104

12
�2*2+0.7

3
� 105  = 1.3056*108 N/mm2               (19) 

 
 χ = K

Iey
L3 = 33333

1.3056*108 *1003 = 255     (20) 

 
According to Figure 2, when b= 0.5 we get�Ɲcrit, homo /π = 2.83379   when χ=200 from where we have:  

 Ɲcrit, homo= (2.83379*π)2 = 79.25 and �Ɲcrit, heter/π = 2.86060 when χ = 255 from where we have: 

Ɲcrit, heter = (2.86060 *π)2 = 80.76. Substituting these to equation (8) yields: 
 

 Ncrit(homogeneous) = 
Iey Ɲcrit,homo

L2  = 1.6667*108*79.25
1002  = 13.208*105 N                (21) 

 

 Ncrit(heterogeneous) = 
Iey Ɲcrit,heter

L2  = 1.3056*108*80.76
1002  = 10.544*105 N               (22) 

 

 
Fig. 3. The heterogeneous cross section of the selected beam. 

 
Furthermore, Table 2 and 3 show the critical load findings for three intermediate support positions respectively 
using the boundary element method (BEM) and finite element method (FEM). In accordance with Figure 2, the 
results increase together with the middle support coordinate. The values are greater for homogeneous steel section, 
since it has a greater flexural rigidity. Furthermore, the one-dimensional BEM results are accurate enough. The 
maximum relative difference between the BEM and FEM models can be found when the cross-section is 
heterogeneous and b=0.5, this distinction is 3.2% only.  
 

Table 2. Critical loads results using the boundary element technique. 
Spring support location 

(b) 
Critical loads (105N) 

Homogeneous FssF beams (χ=200) Heterogeneous FssF beams (χ = 255) 
0.00 or 1.00 6.57 5.14 
0.25 or 0.75 7.81 6.29 

0.5 13.20 10.54 
 

Table 3. Critical loads results using the finite element method. 
Spring support location 

(b) 
Critical loads (105N) 

2D homogenous FssF beams 3D heterogeneous FssF beams 
0.00 or 1.00 6.60 5.04 
0.25 or 0.75 7.67 6.00 

0.50 12.82 10.36 
 
The buckling mode shapes are normalized vectors and do not depict real deformation magnitudes at critical loads. 
They are normalized to a magnitude of 1.0 for the largest displacement component. Figure 4 shows the first 
buckling mode shape when b=0.25. 
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Fig. 4. First buckling mode shape (b=0.25): (a) 2D model with homogeneous cross section; (b) 3D model with 

heterogeneous cross section. 
 
 
4. CONCLUSIONS 
 
Within this article, the stability of compressed beams was investigated. The beams have uniform cross-section 
along the centerline, but the material distribution might be nonhomogeneous. Besides the classical end supports, 
there is an elastic third one in intermediate position. The validity of the Euler-Bernoulli hypothesis was assumed 
and the related ordinary differential equation was replaced by an integral equation during the proposed solution 
procedure. The critical loads are proportional to the eigenvalue while the kernel is the second derivative of the 
Green function in this formulation. Recalling the definition and the properties of the Green function for such 
boundary value problems, its construction was possible with the boundary and continuity conditions. With the 
Green function, it was possible to numerically solve the homogeneous Fredholm integral equation with boundary 
element technique. The results show the significant effects of the material composition, middle support position 
and spring stiffness on the lowest critical loads. When the spring stiffness of the middle support was zero, the 
structural element behaved as if it were only supported at the ends and if the stiffness was approaching to infinity, 
the intermediate support acted as a rigid roller. The numerical findings were compared with finite element 
computations and the correlation was found to be very good.  
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