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Abstract: In order to predict defects, improve performance, and streamline 

operations, machine learning techniques are becoming ever more 

indispensable in manufacturing processes, mainly in sheet metal forming. 

Incorporating neural networks into the process of sheet metal forming is the 

subject of this article's exhaustive examination of recent developments and 

applications. Exploring datasets from a variety of sheet metal forming 

processes, numerous machine learning models, including ensemble and 

single learning techniques are investigated. The functionality of this method 

extends to various tasks, including the prediction of springback in cold-

rolled anisotropic steel sheets. The review provides a conclusion section that 

presents the main implementation methodologies and how they address to 

some manufacturing issues.  
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1. INTRODUCTION 

 

In recent years, the integration of machine learning (ML) techniques, particularly neural networks (NN), into 

manufacturing processes has gained significant attention, revolutionizing various industries including sheet metal 

forming [1, 2]. This paper provides a comprehensive review of the latest advancements and applications in 

leveraging neural networks to enhance sheet metal forming processes. By exploiting the power of artificial 

intelligence, researchers and engineers aim to predict defects, optimize performance, and streamline manufacturing 

processes, ultimately leading to improved product quality and efficiency. The utilization of machine learning in 

manufacturing processes specifically in sheet metal forming is motivated by the need to address complex 

challenges such as predicting springback, evaluating friction effects, and optimizing cutting processes. Traditional 

approaches often struggle to cope with the intricacies and variability inherent in these processes. However, with 

the advent of neural networks, there is newfound potential to tackle these challenges more effectively. One notable 

aspect of machine learning in sheet metal forming is the adoption of both single-learning and ensemble models. 

These models are trained using datasets derived from real-world sheet metal forming processes, enabling them to 

capture the inherent complexities and nuances present in such systems. Ensemble predictive models, in particular, 

have emerged as a promising approach, offering an efficient means to reconcile model bias and variance, thereby 

enhancing predictive accuracy. 

 

Various applications demonstrate the versatility and effectiveness of neural networks in sheet metal forming. For 

instance, predictions of springback in cold-rolled anisotropic steel sheets are made using multilayer perceptron-
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based artificial neural networks coupled with genetic algorithms (GA) [3]. Additionally, neural networks are 

employed to evaluate temperature-induced friction effects and predict cutting forces in helical end milling 

processes, showcasing their utility in addressing diverse aspects of sheet metal forming. Innovative manufacturing 

processes such as single-point incremental forming (SPIF) [4] have also embraced neural networks due to their 

ability to handle output variability effectively. Furthermore, advancements in laser-engineered net shaping (LENS) 

[5] have enabled the creation of advanced metal materials, although subsequent grinding processes remain 

necessary. Machine learning techniques, including artificial neural networks (ANN), play a vital role in optimizing 

these processes and improving overall efficiency. 

 

Moreover, the integration of machine learning in sheet metal forming extends to areas such as friction modelling, 

failure prediction, and formability optimization. Neural networks are leveraged to model friction phenomena, 

predict process parameters, and develop efficient force prediction models. Additionally, they enable the 

optimization of surface roughness and formability parameters, contributing to enhanced product quality and 

performance. 

 

The potential of machine learning in sheet metal forming is further underscored by its application in diverse 

domains such as crystal plasticity simulations, ultrashort laser pulse generation, and welding. These applications 

highlight the breadth of opportunities presented by neural networks in addressing multifaceted challenges in 

manufacturing. Overall, the integration of neural networks into stretch-forming represents a significant 

advancement with far-reaching implications for the industry [4, 6-9]. By harnessing the capabilities of artificial 

intelligence, researchers and practitioners can overcome longstanding challenges, unlock new opportunities, and 

pave the way for a more efficient and innovative manufacturing landscape. This review aims to cover 

chronologically the past 5 years advances and applications in this field, offering insights into the transformative 

potential of integrating neural networks into sheet metal forming processes. 

 

 

2. THE NEED FOR PREDICTION 

 

The review consists of various scientific articles related to stretch forming and manufacturing processes [4, 6, 7,10, 

11]. The common nominator throughout the research presented is the use of artificial neural networks (ANNs) to 

improve the prediction and optimization of various aspects of these processes. Neural networks have been used 

for predicting defects, springback, forces, and friction effects. These applications demonstrate the potential of 

neural networks to improve the accuracy and efficiency of sheet metal forming processes. Neural networks in 

stretch forming help in predicting and optimizing various parameters, such as material properties [12], process 

parameters [13-15], and surface roughness [16, 17]. 

 

2.1. Process parameters 

Process parameters play crucial roles in the sheet metal forming process [13, 18, 19], including predicting 

springback [20, 21], evaluating friction effects [14], optimizing forces [4, 22], and enhancing surface roughness 

and formability [10, 23]. They serve as inputs to machine learning models and simulations, enabling the 

optimization and improvement of the manufacturing processes.  

 

Recent research in this field offers a high variety of issues that have been addressed, such as predictions of 

springback of cold-rolled anisotropic steel sheets [24], evaluating temperature-induced friction effects in sheet 

metal forming [25, 26], incremental deformation in manufacturing processes [4, 8], superplastic forming in 

aluminium forming [27], flow stress of TI-6AL-4V during hot deformation [26, 28], research on friction coefficient 

with artificial neural networks [14], machine learning in manufacturing and sheet metal forming, uniaxial tension 

tests on aluminium alloy 6016-T6 [29], drawbead simulator for determining their shape and coefficient of friction 

[30-32], failure prediction in sheet metal forming design [32], the influence of sheet forming process parameters 

on surface roughness [16, 17], a machine learning method for hardening law of aluminium alloy sheets in 

manufacturing processes [33], data-driven methodology for high-velocity forming (HVF) [34], use of data science 

methods in manufacturing processes, deformation behaviour of metal materials in plastic forming [35], AI for 

springback compensation in hairpin forming [20], adopting adaptive neural network fuzzy inference system 

(ANFIS) [23], proposing a machine learning-based constitutive model for anisotropic plasticity in sheet metals, 

optimizing the formability of sheet metals, evaluating formability of AISI 316 steels [9], scalar-based surrogate 

models for sheet metal forming [36], crystal plasticity theory in sheet metal forming [37], grain size in sheet metals 

and formability [23], or machine learning material models (MLMM) [12, 38]. 
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2.1. Generated data and prediction complexity 

The training of an NN starts with the generated or recorded data [38]. To generate data prediction for stretch 

forming, there has to be identified all of the relevant process parameters. The NN outcome is correct only if relevant 

data is fed into the training process. For this to happen complex and reliable measurement systems are used. Such 

measurements can include an inline-measurement system integrated into a production tool [24], numerical 

simulation using finite element methodology (FEM) [8, 38-40], data acquirable in real physical experiments 

(uniaxial tensile test, sheet processing data) [41]. 

 

A regression model and an artificial neural network model were built to determine the complex interactions 

between the process parameters and the friction coefficient [31], a genetic-algorithm-based multi-objective method 

to maximize forming height, minimize thinning rate, and obtain the optimum process parameters [3], optimization 

algorithms in neural networks to maximize the formability of sheet metals based on a tensile curve and texture of 

aluminium sheet metals [11, 23], the coefficient of friction (COF) value was determined using the Random Forest 

machine learning algorithm and artificial neural networks (ANNs) [30, 42], image-based optimization architecture 

[43], along with a differential evolution algorithm with self-adaptive factors [23, 41], Levenberg-Marquardt 

training algorithm performed the most effectively in predicting wall diameter and pillow effect [44], multiplayer 

perceptron’s trained by backpropagation [3], Levenberg-Marquardt algorithms favour punch bend depth under 

load as the most important variables affecting the springback coefficient [19, 45], and the flow stress of Ti-6Al-

4V during hot deformation was modelled using a decision tree algorithm [28]. 

 

 

3. INTEGRATION OF NN’S 

 

In 2020 M. Dib el. al, proposes a machine learning approaches for predicting defects in sheet metal forming 

processes, including ensemble predictive models and single classifiers [1]. In the same year, T. Trzepiecinski and 

G. Lemu Hirpa make prediction of springback of cold-rolled anisotropic steel sheets using a multilayer perceptron-

based artificial neural network (ANN) and genetic algorithm (GA). The study finds that specimens cut along the 

rolling direction show higher springback coefficient values, while Young's modulus and ultimate tensile stress 

have no significant effect on the springback coefficient [3]. K. Matthous et. al, research is on observability and 

controllability of temperature-induced friction effects in sheet metal forming processes, focusing on the integration 

of an inline measurement system into a production tool to gather data for a tribology-based control system. 

Multilayer artificial neural networks are trained to evaluate the measurement system and identify potential further 

measurements within the process [25]. The development of a new high-strength Al-Zn-Mg-based alloy for 

superplastic forming is presented by O. Yakovtseva et. al. in “High Strain Rate Superplasticity in Al-Zn-Mg-Based 

Alloy: Microstructural Design, Deformation Behaviour, and Modelling”; the alloy which provides superplasticity 

with an elongation of 600-800% in a strain rate range of 0.01 to 0.6/s and less than 2% residual cavitation. The 

superplastic flow behaviour of the alloy is modelled via a mathematical Arrhenius-type constitutive model and an 

artificial neural network model [27]. 

 

The study “Assessment of the effectiveness of lubrication of TI-6AL-4V titanium alloy sheets using radial basis 

function neural networks”, by T. Trzepiecinski and M. Szpunar, published in 2021, investigates friction coefficient 

value and empirical model building using radial basis function artificial neural networks. Tests were conducted on 

a friction simulator with sheets of Ti-6Al-4V titanium alloy, including variable contact forces, rounded surfaces, 

and various lubrication conditions. The coefficient of friction (COF) value was highest for average values of 

nominal pressure and kinematic viscosity. SAE10W-40 engine oil ensured the most effective reduction of COF 

[46]. Research work also explore the capability of shallow artificial neural networks (ANN) for identifying 

material constitutive model parameters and predicting punch displacement in sheet metal press-brake air bending 

[12, 45]. In another paper by T. Trzepiecinski and M. Szpunar friction phenomena is researched by using artificial 

neural networks models, with the Levenberg-Marquardt algorithm being the best fit for regression [47]. Two latest 

constitutive models: modified Arrhenius (m-A) and combined Johnson-Cook and Zerilli-Armstrong (JC-ZA) ware 

used for predicting flow stress, while the Marciniak-Kuczynski model was used for predicting forming limits; this 

model proposed by A. Morchhale et. al in 2021 and it was concluded that artificial neural networks (ANN) are 

more accurate and versatile than dimensional analysis models in predicting forming limits [26]. Machine learning 

was used by S. Athreya et. al. for design optimization in progressive die stamping, with a surrogate model based 

on an artificial neural network, achieving an accuracy of 5%. These studies provide important insights into the use 

of AI and machine learning in various industries [36].  
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Drawbeads are used to adjust flow resistance or stress in complex shapes. In 2022, T. Trzepiecinski and S. Najm 

propose in their paper “Application of artificial neural networks to the analysis of friction behaviour in a drawbead 

profile in sheet metal forming” a methodology, using artificial neural networks (ANNs), to understand the impact 

of friction process parameters on friction coefficient. The friction coefficient was determined for low-carbon steel 

sheets with various drawability indices. Tests were conducted under dry friction conditions and lubricated with 

machine oil LAN46 and hydraulic oil LHL32. Various specimen orientations and surface roughness values were 

considered. The coefficient of friction increased with increasing surface roughness of counter-samples. The study 

used backpropagation in an MLP structure and Garson partitioning weight to calculate the relative importance 

effect on coefficient of friction. The Bayesian regularization backpropagation (BRB)-Trainbr training algorithm 

and the radial basis normalized-Radbasn transfer function were the best predictor [31]. 

 

In 2022, sheet metal forming design failure prediction is researched by I. El Mrabti el. al. [32].The research paper 

“A comparative study of surrogate models for predicting process failures during the sheet metal forming process 

of advanced high-strength steel” conducts and investigation of four common surrogate techniques: Response 

Surface Methodology (RSM), Radial Basis Function (RBF), Kriging, and Artificial Neural Network (ANN). The 

training data was obtained by developing of a finite element model (FEM) to predict thinning and fracture [32]. 

The deformation behaviour of metal materials in plastic forming is influenced by deformation rate, forming 

temperature, and plastic variables. Three models were analysed: the phenomenological constitutive model, the 

microscopic constitutive model, and the artificial neural network constitutive model. This work, presented in a 

review paper “Plastic deformation behaviour of metal materials: A review of constitutive models” by J. Xiangdon 

el. al. indicate that macroscopic mechanical properties research is crucial for analysing process parameters and 

deformation process of metal plastic forming, and understanding the influence mechanism of macroscopic 

mechanical properties is crucial to establish material constitutive models under different deformation conditions 

[35]. Z. Yumeng et. al. proposes an industrial production monitoring with artificial intelligence was proposed using 

a transfer learning-based Stacked Auto-encoder (SAE) with Convolutional Neural Network (CNN), which 

improved performance and suggested the potential for pattern recognition in sheet metal forming processes [48].  

 

In 2023, the friction coefficient is studied from other perspectives. One of them is the CatBoost machine learning 

algorithm used for modelling and parameter identification of friction coefficients for three grades of deep-drawing 

quality steel sheets. Input parameters included lubrication conditions, normal force, and surface roughness of 

counter sample surfaces. Different transfer functions and training algorithms were tested to build the optimal 

structure of artificial neural networks. An analytical equation was created to calculate the coefficient of friction of 

each material. The Levenberg-Marquardt training algorithm performed the best in predicting the coefficient of 

friction [14]. Another approach is proposed by T. Trzepiecinski et. al. in their paper “Analysis of the Frictional 

Performance of AW-5251 Aluminium Alloy Sheets Using the Random Forest Machine Learning Algorithm and 

Multilayer Perceptron” on the determination of the coefficient of friction (COF) in the drawbead region in metal-

forming processes. Experimental tests were carried out under conditions of dry friction and lubrication of sheet 

metal surfaces with three lubricants: machine oil, hydraulic oil, and engine oil. The Random Forest (RF) machine 

learning algorithm and artificial neural networks were used to identify the parameters affecting the COF [42]. 

 

The research conducted by M. Zhang et. al. examines the formability of AISI 316 steels, focusing on the 

microstructure that affects their formability. Austenitic steels with strain-induced martensite (a-martensite) cause 

hardening and formability reduction. Relative area of strain-induced martensite measured using metallography 

tests, while forming limit diagrams (FLDs) were obtained using hemisphere punch test. The data was then used to 

train and validate an artificial neural fuzzy interfere system (ANFIS), that shows satisfactory results compared to 

experimental measurements [9]. 

 

The study investigates the impact of anisotropy on sheet metal forming, focusing on its influence on the metal's 

crystallographic structure and rolling process. Crystal plasticity theory accounts for anisotropic elastic tensor and 

crystallographic deformation mechanisms. High computational costs hinder integration of crystal plasticity theory 

in macro simulations. Machine learning approach aims to rectify this issue with the use of the DAMASK 

simulation package. The study also explores springback compensation in sheet metal components using the finite 

element method and artificial neural network, with nine experiments designed considering three process 

parameters. A phenomenological material model for an AA5083 aluminium alloy provided training data for neural 

network study [37]. Another approach is the study of the grain size's impact on formability in sheet metals, as grain 

size is considered key factor in determining formability in sheet metals [23]. The study conducted by N. Yang et. 

al. in 2023 uses design of experiment (DoE) and artificial intelligence (AI) methods to find optimal grain size 

conditions and predict forming limits. Experiments provide initial data for training and testing DoE and AI. The 
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response surface method (RSM) is used to calculate the optimum grain size, and the trained neural network predicts 

formability under the calculated optimum condition. The results indicates that DoE and AI can aid in designing, 

determining, and predicting optimum grain size for sheet formability [23]. 

 

 

4. CONCLUSIONS 

 

This article explores the use of neural networks in different aspects of sheet metal forming processes. It focuses 

on their ability to predict defects, springback, friction effects, and deformation behaviour. Moreover, advanced 

algorithms were implemented and proven to be effective in solving problems such as: defects identification 

parameters (parameters related to defects in sheet metal forming processes, such as surface irregularities, cracks, 

wrinkles, and deformations), material properties (characteristics of the sheet metal material, including its 

composition, thickness, mechanical properties, and anisotropy), process conditions (parameters related to the 

forming process, such as temperature, pressure, strain rate, tooling design, and lubrication), quality metrics (used 

to evaluate the performance of the NN models in defect prediction, such as accuracy, precision, recall). These 

process parameters are essential for developing accurate and reliable machine-learning models for defect 

prediction in sheet metal forming processes. 

 

The review has emphasized the use of artificial neural networks (ANNs) in predicting the springback of cold-

rolled anisotropic steel sheets. The research has identified the punch bend depth under load as a crucial variable 

that affects the springback coefficient. In addition, artificial neural networks (ANNs) are used to analyse friction 

tests, build empirical models, and predict surface roughness. These applications showcase the high accuracy and 

strong correlation with measured data. In addition, the review explores the advantages of using ANNs instead of 

dimensional analysis models to forecast forming limits and deformation force in sheet forming techniques. The 

application of machine learning technologies in design optimization highlights the adaptability and efficiency of 

neural networks in enhancing manufacturing processes. In addition, the combination of neural networks with other 

modelling techniques like finite element analysis and symbolic regression to improve the discovery of process 

knowledge and enhance prediction accuracy. Neural networks have become essential tools in advancing sheet 

metal forming engineering, helping to optimize sheet metal formability and address challenges such as springback 

compensation and formability reduction in specific materials. Thus, this paper highlights the significant 

contribution of neural networks in enhancing the comprehension, forecasting, and enhancement of different 

aspects of sheet metal forming processes. This progress opens up opportunities for more streamlined and 

productive manufacturing methods. 
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