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STRESS AND DEFORMATIONS IN TOROIDAL SHELLS WITH
ELLIPTICAL TRANSVERSAL SECTION
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Abstract. The article approaches the analysis of stress and deformation states; in the
toroidal shell with the elliptical cross section with two specific positions, relative to the axis
of symmetry. The internal pressure of a working environment as well as the effect of its
temperature are considered external loads. The two effects may overlap taking into account
the elastic state of the shell material.
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1. INTRODUCTION

The industrial equipment’s in the structure of the process technology, among other forms of shells, also contains
toroidal elliptical cross-sections with large semiax along the axis of symmetry or perpendicular to it. These
structures are used, as well as those with a circular cross-section, with the advantages recognized in terms of
economics of building materials or diminution of the stress concentration by connecting with other geometrical
shapes of envelopes [1-14]. In addition to the stable application in the elastic field of application, the literature
also considers the elastic or plastic instability of such structures [9-11].

2. TOROIDAL SHELL WITH ELLIPTICAL TRANSVERSAL SECTION

2.1. The main curvature rays
When replacing with an ellipse the circle which can generate a toroidal surface with large semiax along the O X

axis and originated in the center of the ellipse and the small semiax along the O y axis and also originated in
the center of the ellipse, the main radii of curvature are form as [15]:

R, :[1+(d r/d y)2]3/2/(d2r/d y*); R, =r/|sin ¢ )

Note: In order to preserve the physical significances of the calculated sizes (main radii of curvature, stresses and
deformations), the following will be accepted|si n (p| although for the contour ABC of the ellipse the value of

the function is positive, while for the contour CDA ithasa negative value (the portion f)_ﬁ).

The current radius of an ellipse point is determined by the formula [15]:
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Fig. 1. Toroidal shell with elliptical cross-section with large horizontal axis(a ) b ) [15, 16].

The (+) sign characterizing the semi ellipse ABC, and the (-) sign semi ellipse CDA. In this way, the current X
quota will be accepted with a positive value in the evaluation of the distance between the current radius r and

the position of the center of the ellipse defined by R,. After crossing the arc;ﬁ’, the point P on route BCis
defined by the existence of the center K ,, which is above the straight O O, (mirror image). As a result,
symmetric P points relative to O O, will be at the same distance X, measured with respect to the vertical axis
O, y,. Asimilar position can be specified for the current P points, which pass the routeCDA. The following
observations can be made [15]:

- for contour ABC:

dr/dyz—[a-\/az—(r—RO)Z}/[b(r—RO)] ®)

dzr/dyzz—a4/[b2~(r—R0)3] @

- for contour CDA:

dr/dy=|ayfa’= (R, - )7 | /[b(R, ~ )] ©)

d’r/dy?= a*/[b*(R, —r)°] (6)
Appropriate customizations lead to:
- for contour ABC:

{pe[0;r]ir2R,;;r=Ry+x;xe[0;a];A(p=0); B(p=7/2); C(p=r)}:
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Rl

:[(bz—a x%+a 3/2/
RZ:r-[(bz— )(r=Ry)* +a’ /[b r-R,

=|R,/|sine||+a®/(a*sin? (o+b COS(pl/2
[lsin g

=(R,+ x)-[(b2 - az)-x2 + a4]1/2/(b~x)

sing=[b(r- R(,)}/[(b2 —a’)(r-Ry)* + a“]m:
1/2

:[b-(R2-|Sin o| - RO)}/[(bz —az)-(R2.|Sin o| - Ro)2 +a4] =

=b-X/|:(b2 _az)_xz n aql/z
COSgo:{a-[az—(r—RO)Z]”Z}/[(bZ— ?)-(r - Ry )2+a4}1/2=

:{a-[az—(R2-|sin¢?|—Ro)zjl/z}/[(b a’)(Ry[sing|-R,)* + 4}1/2:
ot ][0t

- for contour £DA:

[(b2 —a’)(r-Ry)*+ “T/z/(a“b) azbz/(az-sinzqw b%cos?e)*? =

U]

(®)

©)

(10)

{pel[ri2z]ir<Ry;xe[0;a];C(p=7);D(9=3-7/2);A(p=2-7)}:

R1=[a4+(b2 (Ro—1) 3/2/ =a’b’/(a*sin’p+bicos’ep)’’ =

[ USRS T“/( d
R2=r-[a4+(b2—a) (Ry —1) /[b Ry~ )
=[R,/|sing|]-a?/(a*sin (p+b .cOs (/))1/2

:(Ro—x)-[a4+(b2—az)-xz}l/z/(b.x)
sinp=[b(Ry =) /[a*+ (6" ~a)(Ro =1)" ]

1/2

=[b-(R, - R2-|sin(p|)]/[a“+(b2 ~a?)(R, — Ry[sin ¢])? ] _

= b~x/[a“+ (b2 - a2)~x2}1/2

cor o= (aa' (R, 1) [t (0 - atp(r. <) |

(11)

(12)

(13)
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1/2

= {a-[az—(RO—R2-|sin 9| )le/z}/[a‘# (b*-a’®)-(R,—Ry|sin ¢|)2] =
=[a.(a2—x2)1/2]/[a4+(b2—az).xz]l/2 (14)
where R, has the meaning in Figure 1, with equality being noted x = r —R, € [0; a].

Note: For the determination of dimensions X, the semi ax b conveniently divided in a positive or negative
sense, the respective values being introduced into equality:

Xx=a-1-y?/b? (15)

deduced from the equation of the generating ellipse (with center O, - Figurel).

2.2. Normal unitary forces, meridional and annular
Under the action of the internal overpressure p, the following unit expressions are found for the normal unitary

forces S( p)and T ( p)[15]:
-for contour ABC (r 2R ,; r=R, + X; X € [O; a]):

1/2

_p(rP-R5)  p(r+Ry)

S(p)= = fa‘+(b*-a’)(r-Ry)*? 16
(®) 2:r(sing) 2.b-r [a +( a )(r 0)} (16)
r’—R? a‘+2r(b?-a?)(r-R
T(p)=pRy1- 0 -2 2( 2 ) 201)2 an
2-Ryr-(sing)| 2b [a +(b _a )-(r— R,) }/
in which the variable r, respectively:
—forcontourEEﬁ(l’SRO;rzRo—x);
p'(R(Z)—TZ) p(r+RO) . 1/2
S(p)= = b*-a’)(R,-r)*| (8
(p) 2:r-(sing) 2-b-r [a +( a )( o= 1) ] (18)
R2—r? a*+2r(b?-a?)(R,-r
T(p)=p-R2~ 1- —— --E. 4 2( 2 )( O2 1)2 (19
ZRer (s g)| 28 [t (b 2 (R, ]

2.3. Stress state
By referring to the relations of calculation of the normal unitary forces, we can deduce the formulas
characteristic of the normal meridional and annular stresses - no thermal effect - written in the form:

-For contourdBC (r 2R ,; r = R, + X; Xe[O; a]):

R vz
Gld(p): ﬁ'{[l"‘rj)(j'[a“"'(bz—az)'xz] } (20)

)
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p a‘'+2(R,+ x)-(bz— az)-x

2-b-5' [a4+(b2_a2)'xz:|1/2 (21)

O-Zd(p) =

representing the normal stress on the right side of the ellipse, the sizes R, and R, being able to be replaced
with x dependent expressions (7, 8).

'-forcontourfﬁﬁ(r <R, r=R, —|X|; |X| € [O; a]):

R
(o) gl (e e ] e

p a'+2(R,- x)-(bz— a2)~x
2-b.5' [a4+(b2—a2)-xz]l/2

o,.(p) = (23)

representing the normal stress on the left side of the ellipse, the sizes R, and R, being able to be replaced with
X dependent expressions (7, 8).

Note: The following customizations are deduced from the comparison of previous expressions for normal stress:

-inpointsAand C (X = 0; r = R, - Figure 1)
o4(P)=0,.(p)=pa’/(bd); o,(p)=0,(p)=pa’/(2b5) (4

[oa(p)io(p)]/[o2a(P)io,(p)]=2 (25)

-inpointB (X = a; r = R,+ a - Figure 1):

-a R
o4(P)= _5.5.[1+ A _: aj (26)
0
GZd(p):—z.bP’-.g'[aer 2-(Ry+ a)-(bz—az)] @7)

2
o, ()= p' -[a3+2-(R0—a)-(b2—a2)] (28)

2.4. Deformation state
The specific linear deformations produced in the case of such a structure, in case of the internal overpressure, are
in the form [16]:
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- for contour ABC (r 2R ,; r = R, + X; X e[O; a]):

£1+ ROR:)L X]\/a“r(bz—az)'x2 -
gld(p)zm' a‘+2:(Ry+x)(b*—a*)x
\/a4+(b2—a2)-x2
a*+ 2:(R, +x)-(b2—a2)-x
2
£r4(P) = ——"—- ‘/a #(bf-af)x (30)

2-E-b-6
—v.(1+R +Xj\/a + b a) x 2

(29)

respectively:

-for contour DA (T <R ; r =R, —|x|; x| €[0; a]):

[1+ RORE Xj-\/a4+(b2— a’)-x? -

_ p
els(p)—m' a4+2-(RO—X)-(b2—a2)-x @31
.
\/a4+(b2—a2)-x2
a4+2(R0—x)-(b2—a2)x
4 b2_ 2). g2
gZS(D):ﬁ' \/a +( 2 )X (32)
4 2 2 2
—v-(1+ O_Oxj-\/a +(b?-a?)-x

condition a* + (b2 — az)-x2 ) 0 being accomplished for |x | [ 0; a].

Equations (7) - (15) for the main curvature rays and (29) - (32) for specific linear deformations can be used in the
evaluation of the displacements of the points of the meridian of the shell u ( p) and w ( p) respectively the

radial displacement A r ( p) written in the form [16]:
-for contour ABC (r 2R ,; r=R, + X; X € [0; a]):

b.
u, (p)= a 1, (33)

\/a4+ (bz— az)-x2
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a-Ja’-x? p-(R, + X)
Wd(p): " > . Z.Id_ZE b2 )
\/a +(b —a)-x "E-5-b%x

~{a4+ 2:(Ry +x):(b*=a%)x- v-%-[a‘w (b*- a2)~x2]} (34)

4 . . 2— 2. p—
o(Rys x) a'+2:(Ry+x)-(b*—a?)x

A = : . 35)
rd(p 2-E-b-5-\/a4+(b2—a2)-x2 —V'ZRR01+XX'[34+(bz—az)'xz]
—forcontourEEi(rSRo;r=R0—|x|;|x|e[0;a]):
b-x
. = 1, (36)
u (p) \/a4+(b2—a2)-x2
~ a-\a?-x? _p(Ry—x)
S ey e
37)
2-R,— X
-{a4+ 2-(R0—x)(b2—a2)x—v. Roo—x [ 4+(b2—a2)-x1}
a‘+2(R,—x)(b*-a?)x-
Ar,(p)= P(Ro—©) : 2.R0(—:( 4)( i 2) ED)
4 2 2 2 — — v . — .
2-E-b-5-\/a+(b—a)-x v R, [a+(b a)x]
in which equality is considered:
I+ Ryl,y—v-a“l;—2v-Rp(b?—a?)l,-
- 2v(b’-a’)l,-a%Ryl,-
p
Id:m' —a4-[a4+ Z-Rg-(bz—az)]H— (39)
- 4-Rga‘(b’-a’)l,-2-a%(b*-a?)l,+
+2v-Rpa%l,+v-a*l,
l,+ Ryl ,,—v-a®l,—2.v-Ry(b’—a?)1,-
b —2v-(b*—a®)ly-a%Ryl,+ )

| = P
© 2:E-ab®s +a4-[a“+ 2-R§-(b2—a2)]-l7+
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respectively the expressions of indefinite integrals:

a‘+(b’- az)-xz]?’/2

|1=.[_ X_(az_xz)l/z

-d x (41)

‘4 (b?- az)-xz]g/2

‘4 (b?- az)~x2_3/2
+

i .dx;|25=.f£?

Ro—x)-(az_xz)l/z'dx (42)

B T
oo I X'[a4(+a(2b2Xza;/)z.qu/z d x (44)

'Gzlxz(az X )1/2.[ad4x+(b2_a2)x T “

A bree x)l/z-[a(jj:(bz—az)x]l/z 4

R fpemp )1/2.[a4d+x(b2_a2)x T o

ol XZ)lxz.[aAI(bz_aZ)xz]w"“ o
gl e,

The correspondence that was considered in the calculating the displacement of the points of the meridian of the
shell u ( p) and w ( p) and the radial displacement A r ( p):

a’b
|:a4+ (bz_ a2)~x2]-(a2— X2)1/2

Note: In the above relationships, the established conditionis X # * a.

The expressions for radial linear displacement of the points of the parallel circles, respectively the rotation of
the meridian, considering the equalities (16) can also be determined:
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ar(p)={u(p)afar= ) - w (o) b} e
a*b 4(p)e
o(p)= i, z_'z_Xz 32 :a4+(b2_az)'xz:'(az_xz)l/zdW(p) 2
[a (b a) }/ + e " dx

for the right and the left side, respectively, of the ellipsoidal cross-section of the toroidal shell.

Note: Another way of positioning the cross-section of the ellipsoidal shape of the toroidal shell is shown in
Figure 2.

The paper [8] identifies appropriate relationships that can assess critical overpressure, written as:

- for the cross-section case, with the large horizontal axis (Figure 1):

(p ) _ 0,358-E-5°2 (53)
" {2l(Roa) e 1] [(07/27) ] < 1)
- for the case of the cross section with the minor axis horizontal (Figure 2):
B 0,358-E-5°
(pcr>1_{Z-I:(Ro/a)—l:l'[(bz/az)_l}_1}'3-2 (54)
y

Fig. 2. Toroidal shell with elliptical cross-section with small horizontal axis (a ( b).

Abbreviations:
a, b — semi axes of the medial ellipse of the cross section of the torus; p — working environment pressure;

p.,— critical pressure;r — radius of current points P ; u, w — the displacements of the meridian points
along the main radii of curvature; X — current dimension; & — the thickness of the shell wall, ¢, £, —

specific linear deformations; angle to center of points P; v — the transverse contraction coefficient of the
material; & — rotating the meridian; o ,, o, — normal meridional stress; A r — variation of current
radius r; E — the modulus of longitudinal elasticity of the material; P — the position of the current points
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on the medial ellipse circumference of shell; S, T — meridional and annular unitary force developed by the
inner working pressure; R, — the radius of the position of the ellipse axis parallel to the axis of symmetry of
the toroidal shell; R,, R, — main radii of curvature; O X, O y — the chosen reference system axe.

3. CONCLUSIONS

The analytical study analyzes stress and deformation states in the configuration of toroidal cross-sections of
elliptical shape with two positions that can be found in industrial practice. In this regard, the two possible cases
are to be considered, namely when the ellipse's large axis is in the horizontal plane, respectively in the vertical
plane. The internal pressure of a working environment and its temperature effect are used as external loads. The
two effects may overlap, considering the state of stress in the elastic domain of the material of the given structure.
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