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Abstract: The optimization of the doubly reinforced concrete beam was investigated in this 

paper using the simulated annealing. Materials costs are considered as the objective function. 

The variables are the width, depth, compression steel, tension steel and cost. The constraints 

are the ultimate moment of resistance, compression/tension-steel ratio, minimum and 

maximum area of reinforcements. At the concrete compressive strength of 25 MPa, it is 

demonstrated that simulated annealing method can be used to optimize the design of concrete 

beams. 
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1. INTRODUCTION 

 

According to [1], compression reinforcement is reinforcement used in the compression zone when the ultimate 

moment of resistance is less than the applied moment. Hence, doubly reinforced concrete beams are those with 

both tensile and compressive reinforcements. Leonardo da Vinci and Galileo in the 1600s carried out full-scale 

structures test models to boost specific characteristics as one of the pioneers of structural design optimization [2]. 

Cohn and Dinovitzer [3] discovered the gulf between the theories and practical applications of structural 

optimization. A limited number of researches on the optimization of concrete structures were also highlighted. 

Sarma and Adeli [4] equally studied the concept of structural optimization. Structural optimization systems can be 

categorized into two main types namely the precise and the empirical methods. The precise method follows from 

the estimation of the optimum outputs of repetitive methods of liner computerization according to [5, 6]. Empirical 

or heuristic constitute the second type of optimization that involves mathematical or algorithm procedures based 

on the current development of artificial intelligence processes i.e. modeled annealing, genetic algorithms, tabu 

search, ant colonies etc. [7-10]. Areas outside structural engineering have also benefited from these optimization 

methods [11]. The substantial arithmetic task is needed in these methods however modest they appear in as much 

as they contain huge iterative procedures where the main objective function is assessed and constraints for 

structural systems are being regulated. 

 

Rajeev S. and Krisnamoorthy C.S. [12] investigated using a genetic algorithm from the heuristic optimization 

process, the weight of steel structures. Coello et.al. [13] Investigated the optimization of the R.C beam using a 

genetic algorithm. Many applications of R.C structures obtained through optimization using genetic algorithms 

abound lately. Model structural optimization work was promulgated initially by Maxwell [14] whereas Schmit 

launched the maiden computerized optimization [15]. Arithmetical systems were immensely adopted in optimizing 
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structures afterward due to the huge success recorded. Vital heuristic algorithms were generated in the 1980s 

heralding the standard of structural optimization for years to come. Simulated Annealing is a typical numerical 

instance which adopts numerical means to model the procedures of progression and collection. Darwin’s concept 

of evolution became the background for the language of simulated annealing methods. “Individual” is the probable 

resolutions to a problem and a set of solutions referred to as “population”. 

 

Four main categories of algorithms have been established and refined over the years and they are the Genetic 

Algorithms (GAs) [16], Evolutionary Programming [17], Evolutionary Strategies [18] and Genetic Programming 

[19]. These four types of algorithms have been fused and reviewed leading to several hybrid optimization 

algorithms with similar sources. Elimination of unutilized resources from the design field formed the basis of 

evolutionary structural optimization (ESO) [20]. Genetic evolutionary structural optimization (GESO) resulted 

from the incorporation of genetic algorithms with evolutionary structural optimization [21]. Several variables 

being imposed by objective optimization problem formed the basis of the controlled evolution method. Elimination 

of unutilized resources from the design field formed the basis of evolutionary structural optimization (ESO) [20].  

 

Structural optimization has been applied to structural works like pre-stressed concrete beams [22] and force-

limiting floor anchorage systems [23]. The late 1990s saw the emergence of the particle swarm optimization 

algorithm. The recognition of oscillators by Van der Pol-Duffing was a by-product of this type of algorithm [24] 

and [25]. Diverse methods can be used to labeled structural optimization. Normally, the main aim is to generate a 

project which results in optimum cost and/or reduced weight or mass. Concrete, reinforcement, and formwork are 

the three main materials used for construction [26]. Structural design optimization can either be founded on cost 

apart from weight such as applicable in structural retrofitting. Reinforced concrete structures optimization under 

seismic loads were investigated by [27] and [28]. Plummeting the vibration and enhancing the dynamic structural 

characteristics of reinforced concrete structures using optimization algorithms methods should command study 

attention [29]. Investigated the optimization of structural passive control systems using a genetic algorithm while 

[30] attempted to optimize the concrete cable-stayed bridge under seismic action. The similarity to the physical 

method of metal annealing or hardening form the basis of simulated annealing which involves a stochastic 

relaxation technique. This system character can be related to the resolution of the absolute optimization procedure. 

The idea of energy is related to the cost of a project and the transiting of the state to the concept of transforming 

to original design variables. New formations by obtaining specimens from the system probability distribution are 

being produced by simulated annealing.  

 

Transformations that lower the objective function and raise it with specific possibilities are being deployed as well. 

Lack of vulnerability to early conjunction near local optimal constitutes the main merit of simulated annealing 

algorithms. [31] and [32] were the first sets of the algorithm founders. Optimization problems of voluminous 

scopes are suitably resolved using the concept of simulated annealing [33]. The ability of SA to resolve difficult 

problems involving concealing universal optimum in the midst of numerous local optimal enhances its suitability 

as compared with other types of heuristics optimization means. The ideology is similar to the cooling and 

solidification of molten metal in the sense that the lowest energy phase is being achieved for gradually cooled 

system. Hence, attaining or realizing a minimum phase of energy is necessitated by a slow cooling process. 

Production of a random preliminary solution initiates the commencement of structural annealing (SA). The present 

outcome accommodates primarily minimal transformation at the early phase. The present solution is then related 

and estimated alongside the value of the objective function. Original solution is then selected supposing it has an 

improved value or if a larger value of the probability function actualized in SA is obtained compared with a 

randomly produced value otherwise, a fresh outcome is produced and assessed.   

The probability of accepting an original outcome is stated as follows: 

 

                                                                          𝑝 = {
1   𝑖𝑓 ∆< 0

𝑒−
∆

𝑡    𝑖𝑓 ∆≥ 0
                                                                        (1)  

 

The estimation of this probability depends on the parameter of temperature, T, which is called temperature, in as 

much as it simulates the temperature of the physical annealing procedure. The rate of lowering is retarded to 

prevent getting arrested at a local lowest point. The following process of temperature reduction can be used: 

 

                                                             𝑇𝑖+1 = 𝑐𝑇𝑖    𝑖 = 0,1, … 𝑎𝑛𝑑 0.9 ≤ 𝑐 ≤ 1                                                   (2) 
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Most derogating movements may be accommodated at the commencement of SA but the most enhanced ones are 

likely to be permitted. This can assist the process to rise out of a local minimum. The attainment of a specific 

volume fraction or pre-determined run time of structures may signal the end of the algorithm process. Several 

authors have investigated the optimization of the design of doubly reinforced concrete beams in recent times. An 

attempt was made to optimize beams dimensions by [34] using algorithms. The process employed the ultimate 

strength design and stress block in its entirety. The deadweight of the beam was used as a variable and the materials 

cost i.e. concrete, steel, formwork were measured. The comparison of the economy between the singly and doubly 

reinforced concrete beams respectively resulted in the display of a normal equation. The design procedures were 

further expatiated using a numerical example. A simply supported doubly reinforced beam with both uniform and 

point loads was adopted for optimization by [35] factoring the parabolic stress block, serviceability variables, 

moments, etc. Optimization method using MATLAB, internal point algorithm, and generalized reduced gradient 

system constitute a comparative study carried out. Limit state design according to IS: 456-2000 was adopted to 

generate the initial outcome. The outcome of the optimization of reinforced concrete beams using simulated 

annealing was investigated by [36] and as recommended by the American Building Code Requirements for 

structural concrete (ACI 318-05). The objective function contained the costs of concrete, reinforcement, and 

formwork. Flexural beam strength, width-height ratio, minimum width and deflection variables were selected as 

the optimization constraints. MATLAB was used to generate an optimization problem. Several examples were 

resolved with the aid of the generated program and proved to give economical, productive, effectual and 

resourceful design. 

 

 

2. MATERIALS AND METHODS 

 

The purpose of optimization is the minimization of the objective function subjected to certain constraints for 

constrained case. This can be presented as: Min f(x) subjected to constraints g(x)<0. 

 

In case of reinforced concrete beam, the cost of the reinforced concrete beam production is the objective function 

to be minimized subjected to both the flexural and geometric constraints. Thus, the objective function is given as: 

                

                                   𝑓 = 𝐶𝑐[𝑏(𝑑 + 𝑑′) − (𝐴𝑠𝑡 + 𝐴𝑐𝑠)] + 𝐶𝑠[𝐴𝑠𝑡 + 𝐴𝑠𝑐] + 𝐶𝑓[𝑏 + 2(𝑑 + 𝑑′)]                          

(3) 

 

Let the tensile steel/cross section area 𝜌 = 𝐴𝑠𝑡/𝑏𝑑. 

 

Let the compression/tensile steel ratio is 𝛼 = 𝐴𝑠𝑐/𝐴𝑠𝑡. 

 

Thus equation (1) becomes: 

                

                                  𝑓 = 𝐶𝑐[𝑏(𝑑 + 𝑑′) − 𝜌𝑏𝑑(1 + 𝛼)] + 𝐶𝑠𝜌𝑏𝑑[1 + 𝛼] + 𝐶𝑓[𝑏 + 2(𝑑 + 𝑑′)]                         (4) 

 

Where the width of the beam b is x1 , the depth of the beam d is x2, a is x3, r is x4, Cc is the cost/unit length of 

concrete, Cs is the cost unit/length of steel, Cf  is the cost /unit area of the formwork. 

 

Substituting those variables into equation (4) yields: 

 

           𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4) = [𝑥1(𝑥2 + 𝑑′) − 𝑥1𝑥2𝑥4(1 + 𝑥3)]𝐶𝑐 + 𝑥1𝑥2𝑥4[1 + 𝑥3]𝐶𝑠 + [𝑥1 + 2(𝑥2 + 𝑑1)]𝐶𝑓      (5) 

 

The design flexural constraint is derived from the Figure 1.  

 
                                                                              𝐶𝑐 = 𝑇 − 𝐶𝑠                                                                               (6) 

 

                                                               0.405𝑓𝑐𝑢𝑏𝑥 = 0.87𝑓𝑦𝐴𝑠𝑡 − 0.87𝑓𝑦𝐴𝑠𝑐                                                    (7) 
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Fig. 1. Section analysis. 

 

                                                                                 𝑥 =
2.1481𝜌𝑏𝑑𝑓𝑦(1−𝛼)

𝑓𝑐𝑢                         
                                                               (8) 

 

                                                                                𝑧 = 𝑑 −
0.87𝑓𝑦𝜌𝑑(1−𝛼)

0.9𝑓𝑐𝑢                  
                                                              (9) 

 

The moment of resistance Mr is given as:  

 
                                                                                    𝑀𝑟 = (𝐶𝑐 + 𝐶𝑠)𝑧                                                               (10) 

 

                                                                   𝑀𝑟 = (0.203𝑓𝑐𝑢𝑏𝑑 + 0.87𝑓𝑦𝛼𝜌𝑏𝑑)𝑧                                                (11) 

 

The flexural constraint is: 

 

                                                                                       𝑀𝑎 − 𝑀𝑟 ≤ 0                                                                 (12) 

 

Other constraints are:  

 

                                                                                           𝛼 − 1 ≤ 0                                                                  

(13) 

 

                                                                                          
0.85

𝑓𝑦
− 𝜌 ≤ 0                                                                 

(14) 

 

                                                                                           𝑏 − 4𝑑 ≤ 0                                                                 
(15) 

 

The whole process is programmed in Java using all the equations presented overleaf. The simulated annealing 

procedure is presented in the pseudo-code in Figure 2. 

 
The pseudo-code was developed into a Java program and tested to ascertain its accuracy. The program was then 

used to generate the parametric data presented in Figures 3 to 7 in the next sections. 
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Fig. 2. Pseudo-code for the simulated annealing. 

 

 
3. RESULTS AND DISCUSSION 

 

The results presented in this section are the variation of width, depth, compression reinforcement, tension 

reinforcement and cost with the moment. Figure 3 is the optimized beam width variation with increasing bending 

moment. It is evident from the plot that there are various minimum widths between 300 and 302 mm up to 500 

kNm moment before the width continues to increase continuously. This is an indication that at a certain level of 

loading there must be commensurable geometry. 

 

 
Fig. 3. Optimized beam width at various moment. 

 

Figure 4 is the optimized beam depth variation with the bending moment. It is evident from the plot that the depth 

remains constant at 400 mm up to the moment of 300 kNm before a steady increase to over 1000 mm. The 

geometrical requirement increases with an increase of the moment. With the geometry considered reinforcement 

influence on the resistance is limited to about 300k Nm. 

 

Figure 5 is the plot of the optimized compression reinforcement variation with moment. The compression 

reinforcement increases steadily up to maximum of 1000 mm2 at 400 kNm before the reduction to about 520 mm2 
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at about 500 kNm. The compression reinforcement starts to increase steadily from about 500 kNm at the 

compression reinforcement of 520 mm2 to more than 2000 mm2. 

 

 
Fig. 4. Optimized beam depth at various moment. 

 

 

 
Fig. 5. Optimized compression reinforcement variation with moment. 

 

Figure 6 is the plot of the optimized tension reinforcement variation with moment. The same trend as observed for 

the compression reinforcement is exhibited in this plot. The range of tension reinforcement between 900 mm2 and 

3200 mm2 is required for the moment of up to 400 kNm before the decline to 2000 mm2 at 500 kNm. The tension 

reinforcement required starts to increase from 2000 mm2 to about 8000 mm2 between 500 kNm and 2000 kNm. 

The same conclusion of geometry dictates the optimum cost rather than reinforcement. 

 

 
Fig. 6. Optimized tension reinforcement variation with moment. 

 

Figure 7 is the plot of the optimized cost variation with moment. The cost remains constant at about N3000 for up 

to about 300 kNm. The cost steadily increases with moment. The behavior might be that at low moment the 

behavior is more of a singly reinforced beam. Once the concrete capacity in bending is surpassed, the contribution 

of compression reinforcement is required. 
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Fig. 7. Optimized cost variation with moment. 

 

 

4. CONCLUSIONS 

  

The simulated annealing method of structural optimization was successfully utilized in this research as a substitute 

for the ESO technique. Simulated annealing can handle constrained optimization of structural design. The 

optimized cost of reinforced concrete structural members such as beam can easily be accomplished using simulated 

annealing. The method competes well with other methods such a genetic algorithm, artificial neural network and 

fuzzy logic to mention but few. 
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