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Abstract: In this paper, a voltage collapse optimization system based on comparative 
studies of swarm-intelligent techniques is proposed for voltage collapse mitigation in power 
system network. The approach draws inspiration from the idea of utilizing the intelligent 
behavior of swarm-based artificial machine intelligence technique coined SWAMI for 
voltage collapse minimization or prevention through dynamic shunt compensation of 
overloaded power network buses. Several simulation studies have been conducted 
considering three very popular and successful SWAMI agents – the PSOM, BCOM and 
ACOM on an IEEE benchmark power network with promising results. Simulation studies 
showed that the PSOM SWAMI exhibited the most stable response in terms of voltage 
profile collapse and recovery from voltage collapse state after voltage sensitivity studies. 
Safe margins of loading and optimal shunt compensations are determined based on the 
SWAMI techniques. 
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1. INTRODUCTION 
 
Power systems have over the years shown tremendous improvements in design and in the standardization of the 
supply from the TRANSCOS to the DISCOS. However, the current challenges of ensuring the stability of such 
power systems have resulted in extensive research in the field using a variety of techniques that are software or 
hardware based. Voltage collapse represents one of the primary stability issues affecting power systems and is 
the result of an extreme level of line faults or excessive overloading in the power system leading to the voltage 
deviating from the normal or expected ranges. In the context of modern power system stability studies, the 
voltage collapse prevention or mitigation in dynamic networks represents an approach via simulation or in real 
time to avert the potential failure of the system and corresponding blackouts; in this research, this is related to 
the power system network voltage profile improvement in simulation. In order to perform this important 
function, optimization is used such that the solution space can be found more quickly and more accurately. 
 
Recently, there has been a keen interest to develop modern Artificial Intelligent (AI) optimization solutions for 
the Voltage Collapse Optimization Problem (VCOP) studies using a variety of evolutionary-swarming 
techniques [1-4]. Some of the very popular evolutionary-swarming power system optimization solutions include 
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the Ant Colony Optimization Method (ACOM) in [5], Particle Swarming Optimization Method (PSOM) in [6] 
and the Bee Colony Optimization Method (BCOM) technique in [7]. However, due to the stochastic nature of 
these SWAMI techniques, the tendency to give stable or reliable responses before and after recovery from a 
voltage collapse state may be impaired. 
 
Thus, it is the object of this paper to identify which one of these optimization techniques can in general perform 
well considering bus overloading tests for a range of power networks and considering a fixed set of the SWAMI 
system-specific parameters.  
 
Our primary objective is to determine the permissible MW loading and corresponding MVAR compensation 
level that should be added to the stressed buses for a recovery from the voltage collapse state to be attained.  
 
This paper is structured as follows: In Section 2, the related works are presented. In Section 3, the 
methodological aspects of the optimization strategies used in this research study are presented. Section 4 
presents the experimental details and discussion of results including the detailed comparative studies of the 
considered ACOM, PSOM and BCOM for power system voltage collapse studies. Finally, we present the 
concluding remarks on this study. 
 
 
2. RELATED WORKS 
 
A number of researches in the field of power system optimization abound in the literature; a recent trend is the 
use of swarm based solutions for effective power system voltage stabilization and control considering certain 
system constraints.  
 
In [6], a voltage stability margin called the L-index earlier introduced in [7] was used in a multi-objective 
minimization optimal power flow problem. Their formulation used a chaotic mutation Stochastic Weight Trade-
off (SWT) swarm intelligence technique based on non-dominated sorting particle swarm optimization (SWT-
NS-SPO) which was applied to IEEE 30-bus power. Simulation results compared with some existing techniques 
such as NSGA-II, NSPSO, NS_CPSO etc. showed that NS- SWT-NS-SPO is best as an optimizer. 
 
Jayakansar et al [8] proposed a ranking scheme based on a standard feed-forward back-propagation trained 
artificial neural network and using L-index for voltage collapse prediction of weak lines of the IEEE 30-bus with 
Thyristor Controlled Series Capacitor (TCSC) compensation. Standard feedforward neural network was used for 
matching the input (load variations) with line indexes computed after a variety of load flow simulations.  
 
The results of the analysis showed that the line that gives the most stability improvement i.e. with more number 
of lines improved can be identified when a step-by-step mutually exclusive installation of the TCSC on the 
discovered weak lines is used. Chatterjee and Roy [9] proposed a Catastrophic Failure Index (CFI) with 
signature analysis for early prediction of catastrophic failures of power system due to voltage collapse. Their 
proposed technique has been applied to the IEEE 30-bus with promising results. 
 
Other methods of VCA include the use of a Genetic Algorithm (GA) based on reactive power dispatch for the 
minimization of the L-index to improve voltage stability [10], VSM improvement using PSO and Continuation 
Power Flow (CPF) techniques [11], game theoretic approach for voltage stabilization [12] and the Voltage 
Collapse Index (VCI) prediction based on the structural characteristics of the L-index [13]. 
 
One strong theme amongst the aforementioned researches and similar ones is the use of swarm or evolutionary 
control agents to modify the power system control variables adaptively which in turn optimally leads to better 
and more optimal results. However, the list of swarming techniques is endless and more keep on springing up in 
the field of soft computing; this may be attributed to the idea that there is indeed no universal solution to 
optimization problems [14].  
 
Though as pointed out in [15], quite a number of swarm-based optimization strategies exist in the literature, there 
are still some few and very popular ones that stand out in most optimization problems used by academic 
researchers. In this research study, we concentrate on three very popular and successful SWAMI strategies 
namely the Particle Swarm Optimizer (PSO), the Bee Colony Optimizer (BCO) and the Ant Colony Optimizer 
(ACO) as applied to a power system optimization problem.   
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3. MATERIALS AND METHODS 
 
In this study, the considered swarm optimization techniques - the PSOM, BCOM, and the ACOM are described 
succinctly (see subsections 3.1-3.3). These models or optimization solutions fundamentally are composed of two 
key parts: 
i) The mode of operation of intelligent agents (agent module) – explorative or exploitative. 
ii) The objective, minimization or problem function. 
 
In (i), the method of search or exploitation is introduced at a much higher level to solve the problem of 
determining appropriate and clearly defined boundaries or/and constraints including the power bounds (load 
limits) and MVAR compensation bounds (MVAR limits). This is achieved for a number of evolutions or trial 
runs such that as the agent module tends to the finite number of runs, the solution space or point of convergence 
is simultaneously reached. 
 
In (ii), the method of fitting the problem to be minimized or maximized is obtained in line with the search 
operations; this is done at a much lower level. Thus, in the context of this study, the solution of the Voltage 
Collapse Optimization Problem (VCOP) allows the boundaries (numerical ranges) of the test system loads and 
injected MVARS for compensation to be dynamically computed by minimizing a reference voltage deviation 
using the different SWAMI computer programs. 
 
The technique for selecting the best optimizer is also equally presented in sub-section 3.4. 
 
3.1. The particle swarm optimization method (PSOM) 
The PCOM is based on the theory of swarming particles proposed earlier by Eberhart [16]. This method follows 
the fundamental nature of swarming including such important functions as bird flocking, fish pooling, 
organization of air particles, bee hives and other such metaphor-based natural phenomena. These instances are 
used to formulate the method of evolving better solutions through modified searches particle swarms. 
 
The emphasis of using the SPOM in the compensation program is to intelligently minimize the voltage deviation 
cost function with respect to the Voltage Collapse Optimization Problem (VCOP) by exploiting particle 
velocities and positions. 
 
The PSOM modeling is as provided in Algorithm 1. 
 
Algorithm 1: The PSOM Algorithm  
The steps for the PSOM algorithm are as follows (i – xii): 

i. Initialize the size of the particle swarm say, n 
ii. Initialize the positions and velocities for all swarm particles randomly 

iii. While end criterion false do 
a. t = t+1 
b. Compute fitness value of each particle 

iv. x ( )( ) ( )( ) ( )( )( ( )( ) ( )( ));,,,,1minarg 211 txftxftxftxftxfx nt
n
t ∗∗−∗=∗ −  

v. For I = 1 to n 
vi. ( ) ( )( ) ( )( )( txftxftx t

n
tt 1

#
1

# ,1minarg −= −  
vii. For j = 1 to Dimension 

viii. Update the j-th dimension value of xt and vt 
ix.  ( ) ( ) ( )( ) ( ) ( )( )txtxrctxtxrctwvitv ijjijijjij −+−+=+ *

22
*

11)(1  

a. ( ) ( )1)(1 ++=+ tvtxtx ijjiij  

b. ( ) ( )max,vvmnvisignv ijjij =  

x. End For 
xi. End For 

xii. End While 
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3.2. Bee colony optimization method (BCOM) 
The BCOM was introduced in 2005 by Karaboga and his team at Eciryes university Turkey and is based on the 
intelligent swarming nature of honey bees towards food sources [17]. This method follows the intelligent 
foraging ability of honey bees to source for the best set of food sources [18]. The food sources typically refer to a 
randomly generated sequence of numerical values of the optimization parameters (called the population set) that 
must be fitted to an objective function (or fitness function) in the BCO system. The fitness is calculated for every 
trial run, cycle and for every limit trial of the internally generated solution. Just as in the PSOM technique cost 
function with respect to the Voltage Collapse Optimization Problem (VCOP), the emphasis of using the BCOM 
in the compensation program is to intelligently minimize the voltage deviation by exploiting the honey bee 
search behavior. 
 
The BCOM modeling is as provided in Algorithm 1. 
 
Algorithm 2: The BCOM Algorithm. 
The steps for the BCOM algorithm are as follows (i - xii): 

i. Generate initial population Xi, i = 1…, SN 
ii. Evaluate the population 

iii. Set cycle to 1 
iv. Repeat 
v. FOR each employed bee 

a. Produce new solutions vi by using (1) 
b. Calculate the fitness 
c. Apply a greedy selection process 

vi. FOR each onlooker bee 
a. Choose a solution xi depending on a probability say, pi 
b. Produce new solutions vi 
c. Calculate the fitness 
d. Apply the greedy selection process 

vii. If there is an abandoned solution then: 
a. Replace it with a new solution produced by a scout using (3). 

viii. Memorize the best solution achieved so far 
ix. cycle = cycle + 1 
x. Until cycle = MCN 

xi. END FOR 
xii. END FOR 

 
3.3. Ant colony optimization method (ACOM) 
The ACOM was proposed by Dorigo [19] and uses the concepts of ants intelligent search for food - this method 
follows from the intelligent swarming behavior of sugar ants in nature. It was developed with the idea that the 
intelligent food search direction of ants will lead to better solutions to computational science problems. In the 
context of the VCOP, the ants are motivated towards the direction of high pheromone trail updates as the 
reference voltage deviations become smaller. The better fitness can be attained at the best parameter and variable 
settings.  
 
The ACOM modeling is provided Algorithm 3. 
 
Algorithm 3: The Algorithm for the ACOM technique 
The steps for the ACOM algorithm are as follows (i - xii): 

i. Initialize the number of ants say, n 
ii. While end criterion false do 

a. t = t+1 
b. For k = 1 to n 
c. antk is positioned on a starting node 

iii. For m = 2 to problem size 
iv. Choose the state according to the probabilistic 
v. transition rules 
vi. Append the chosen move into tabuk(t) for the antk 

vii. End For 
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viii. Update the trail pheromone intensity for every edge (i, j) 

ix.  
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x. Compare and update the best solution  
xi. End For 

xii. End While 
 
3.4. Power systems voltage collapse simulation model 
In this study the considered systems model for simulating the effects of voltage collapse and the subsequent 
mitigation using swarm intelligence optimizers include a loading model, a load flow model and a compensation 
model.  
1. The loading model captures the test loads needed to stress a given case bus just beyond its limits. 
2. The load flow model uses a conventional solver – the Newton Raphson (NR) technique to obtain the 
system network solution state and the SWAMI algorithms – PSOM, BCOM and ACOM to find the best fitted 
solution agents or variables. The fitness is determined by an objective function defined in the MATLAB program 
(see Appendix). Here, the loading is applied till point of collapsing the power network. 
3. The compensation model captures the needed injection of MVARS via a theoretical shunt compensation 
model. 
 
The entire systems approach is provided in Figure 1. The SWAMI search module processing is illustrated using 
the information funnel filter concept where fitted solutions (e.g. agent 1) form a good solution (MVAR 
compensation value) and is passed over to the compensator model selection stage.  
 

 
Fig. 1. Pictorial model of a SWAMI voltage collapse mitigation solution; SWAMI agents are indicated by the 

blue circles. 
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3.5. Objective function formulation 
In optimization problems, it is the convention to define an objective function for which the optimizers try to 
minimize or maximize. In this study, the objective is stated as follows: 
 

 ∑
=

−=
PQn

j

j
PQreftotdev vvvMinimize

1
)(:

    
(1) 

 
s.t.: 
Equality constraints: 
 

0=−− LDG PPP      (2) 
 

0=−− LDG QQQ      (3) 
 

( )∑
−

−−=
N

n
jiijijjiLj YVVP

1
cos δδα     (4) 

 

( )∑
−

−−=
N

n
jiijijjiLj YVVQ

1
sin δδα      (5) 

 
and, inequality constraints: 
 

maxmin
GGG PPP ≤≤      (6) 

 
maxmin
GGG QQQ ≤≤      (7) 

 
maxmin

DDD PPP ≤≤      (8) 
 

maxmin
busbusbus VVV ≤≤      (9) 

 
maxmin
busbusbus ddd ≤≤      (10) 

 

lili PP ≥max       (11) 
 

maxmin
ccc QQQ ≤≤      (12) 

 
where )(totdevv = Total voltage deviation; refv = A prespecified voltage reference, set at 1.0.pu; j

PQv = the 

calculated load (PQ) bus voltage at load bus j for simulation time step, t; PQn = number of load (PQ) buses; 

GP = Real Power of Generator; GQ = Reactive Power of Generator; DP = Real Power of Load; DQ = Reactive 

Power of Load; LP = Real Power Losses; LQ = Reactive Power Losses 
 
 
4. EXPERIMENTAL RESULTS AND DISCUSSION 
 
The experiments for voltage collapse studies are carried out considering the IEEE benchmark power network – 
the IEEE 3-machine 6-bus. This power network is used as a baseline for the evaluation and selection of a stable 
SWAMI technique for subsequent experiments. 
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The IEEE benchmark power data including network sizes and ranges used in the simulations can be found in 
Ref.[20]; so we do not replicate them here. The system parameters used for each considered SWAMI technique 
are provided in the Appendix. A loading and shunt compensation table is provided for both power benchmarks – 
see Table 1 for the IEEE 3-machine 6-bus; this table provides the trigger load range needed to initiate a voltage 
collapse situation and an MVAR compensation range; it is indeed an extended range from the one used in Ref. 
[20]. Thus, for each experiment, the first task for the SWAMI optimizer system is to automatically determine the 
extent of loading needed to trigger a voltage collapse in the chosen power network considering a given test bus. 
In addition to this task, the SWAMI system should be able to determine the needed compensation to keep the 
system to within permissible voltage levels. Simulation studies have been conducted for two of the buses for the 
considered power network and for 5 trial runs. The results generally portray graphically the voltage state at load 
buses; it also shows numerically the solved permissible loading and needed shunt injections to stabilize the 
power system. This method of visualization has been found to be more clearer and easier to interpret by both 
experts and novice power system operators. The results are provided in the following sub-sections. 
 

Table1. Load range and shunt compensation setting for IEEE 3-machine 6-bus (extended version of Ref. [20]). 
Bus.No. Load Range 

(MW) 
Shunt Compensation 

Range (MVAR) 
4 0 – 1800 0 – 500 
5 0 – 2500 0 – 500 

 
4.1. Voltage response results using the IEEE 3-machine 6-bus power network 
Initial experimental results of the solved voltages at Bus 4 and 5 considering PSOM, BCOM and ACOM at 
default no-loading and zero compensation states are shown in Figure 2. This table shows the voltage state when 
the system is unperturbed. From, the results in Table 1, it is clearly seen that there is no significant difference in 
the solutions generated by all three class of optimization techniques. 
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Fig. 2. Solved voltages of the various algorithms, PSO (pso), BCO (bco) and ACO (aco). 

 
Further experiments considering loading without and with compensation for Bus Site 4 are provided in sub-
sections 4.1.1 and 4.1.2 respectively; also the case of loading with and without compensations for Bus site 5 are 
provided in sub-sections 4.1.3 and 4.1.4 respectively. These simulations are all performed for 5 trial runs. 
Statistical t-tests are performed in sub-section 4.1.5 to validate the performance of the various SWAMI 
techniques. 
 
4.1.1. Bus loading without compensation at Bus site 4 
In these experiments, the load range setting for Bus 4 is defined in accordance with the loading specifications in 
Table 1. The results for loading at Bus site 4 are as shown in Figure 3 to Figure 5 for the PSO, BCO and ACO 
SWAMI optimizers respectively.  
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Fig. 3. Solved voltages of the PSO optimizer without compensation (5 simulation trials). 
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Fig. 4. Solved voltages of the BCO optimizer without compensation (5 simulation trials). 
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Fig. 5. Solved voltages of the ACO optimizer without compensation (5 simulation trials). 
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4.1.2. Bus loading with shunt compensation at Bus site 4 
In the compensation experiments, the load range setting for Bus 4 is defined in accordance to the shunt MVAR 
levels as specified in Table 1. The results for loading at Bus site 4 are as shown in Figure 6 to Figure 8 for the 
PSO, BCO and ACO SWAMI optimizers respectively. The solved permissible loading and shunt MVAR 
injections for the various considered techniques are provided in Tables 2 and 3 respectively. 
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Fig. 6. Solved voltages of the PSO optimizer with shunt compensation at Bus 4 (5 simulation trials). 
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Fig. 7. Solved voltages of the BCO optimizer with shunt compensation (5 simulation trials). 
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Fig. 8. Solved voltages of the ACO optimizer with shunt compensation (5 simulation trials). 
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Table 2. Solved permissible loading of the SWAMI techniques at Bus 4 (5 simulation trials). 
SWAMI 

Optimizer 
loading1 

(MW) 
loading2 

(MW) 
loading3 

(MW) 
loading4 

(MW) 
loading5 

(MW) 
PSO 180.9565 180.6873 180.6575 180.9512 180.9668 
BCO 129.0000 377.6401 76.5435 175.3767 169.7477 
ACO 501.5441 483.5152 277.4875 357.5780 357.4326 

 
 

Table 3. Solved Shunt injections of the SWAMI techniques at Bus 4 (5 simulation trials). 
SWAMI 

Optimizer 
Shunt_injection1 

(MW) 
Shunt_injection2 

(MW) 
Shunt_injection3 

(MW) 
Shunt_injection4 

(MW) 
Shunt_injection5 

(MW) 
PSO 50.3015 50.057 50.0947 50.3015 50.3732 
BCO 0.0000 161.7765 0.0000 0.0000 0.0000 
ACO 235.9870 264.6301 135.9401 205.6994 174.2764 

 
4.1.3. Bus loading without compensation at Bus site 5 
In the compensation experiments, the load range setting for Bus 5 is defined in accordance with the shunt 
MVAR levels as specified in Table 1. The results for loading at Bus site 5 are as shown in Figure 9 to Figure 11 
for the PSO, BCO and ACO SWAMI optimizers respectively. 
 

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Bus No.

Bu
s V

olt
ag

e (
p.u

)

Voltage Response using PSO - No Compensation at Bus 5

 

 
Vpso(trial-1)
Vpso(trial-2)
Vpso(trial-3)
Vpso(trial-4)
Vpso(trial-5)

 
Fig. 9. Solved voltages of the PSO optimizer without compensation (5 simulation trials). 
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Fig. 10. Solved voltages of the BCO optimizer without compensation (5 simulation trials). 
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Fig. 11. Solved voltages of the ACO optimizer without compensation (5 simulation trials). 

 
4.1.4. Bus loading with shunt compensation at Bus site 5 
In the compensation experiments, the load range setting for Bus 5 is defined in accordance with the shunt 
MVAR levels as specified in Table 1. The results for loading at Bus site 5 are as shown in Figure 12 to Figure 14 
for the PSO, BCO and ACO SWAMI optimizers respectively. The solved permissible loading and shunt MVAR 
injections for the various considered techniques are as provided in Tables 4 and 5 respectively. 
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Fig. 12. Solved voltages of the PSO optimizer with shunt compensation (5 simulation trials). 
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Fig.13. Solved voltages of the BCO optimizer with shunt compensation (5 simulation trials). 
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Fig.14. Solved voltages of the ACO optimizer with shunt compensation (5 simulation trials). 

 
Table 4. Solved permissible loading of the SWAMI techniques at Bus 5 (5 simulation trials). 

SWAMI 
Optimizer 

loading1 
(MW) 

loading2 
(MW) 

loading3 
(MW) 

loading4 
(MW) 

loading5 
(MW) 

PSO 
250.4322 250.7035 250.9547 250.7176 250.8856 

BCO 
58.6426 268.3129 200.8738 459.4129 224.1240 

ACO 
825.9031 390.9839 1119.5944 461.7103 615.1005 

 
Table 5. Solved shunt injections of the SWAMI techniques at Bus 5 (5 simulation trials). 

SWAMI 
Optimizer 

Shunt_injection1 
(MW) 

Shunt_injection2 
(MW) 

Shunt_injection3 
(MW) 

Shunt_injection4 
(MW) 

Shunt_injection5 
(MW) 

PSO 
50.0844 50.3278 50.0769 50.2178 50.0632 

BCO 
0.0000 0.0000 0.0000 205.5550 0.0000 

ACO 
427.2700 99.6191 241.1555 103.5374 255.8316 

 
4.1.5. Correlation tests 
In this section, we evaluated through correlation t-tests in the MATLAB program whether there is any significant 
difference in the voltage responses as computed by the different algorithms for each trial run after compensation 
in terms of their linguistic significance level. The essence of the tests was to identify the SWAMI optimization 
technique that should be considered for further experiments based on the data obtained from the experiments 
(see Figure 6-8 sub-section 4.1.2 and in Figures 12-14, sub-section 4.1.4.). In Tables 6 and 7, the correlation tests 
are presented for bus sites 4 and 5 respectively. 
 

Table 6. Significance level of each SWAMI technique for bus site 4. 
SWAMI 
Optimizer Significance 

PSO no significant statistical difference among the observations 
BCO significant statistical difference among the observations 
ACO significant statistical difference among the observations 
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Table 7. Significance level of each SWAMI technique for bus site 5. 
SWAMI 
Optimizer Significance 

PSO no significant statistical difference among the observations 
BCO significant statistical difference among the observations 
ACO significant statistical difference among the observations 

 
 
5. DISCUSSIONS  
 
The simulations performed in the prior section have shown that the PSO exhibit the most stable performance 
when compared to the BCO and ACO techniques. In particular, during bus loading experiments (bus sites 4 and 
5), the BCO and ACO techniques were characterized by wide variations in solution voltages prior to 
compensations at the considered bus sites (see Figures 4-5 and Figures10-11); this is clearly noticeable in buses 
4, 5 and 6. This situation is somewhat replicated after compensation is applied to bus site 4 with reasonable 
improvements in the voltage profile across all buses for the PSO and ACO (see Figures 6 and 8) and slight 
improvements in that of the BCO (see Figures7). As per the bus site 5, the PSO exhibited a better voltage 
response after compensation when compared to the BCO and ACO techniques which performed poorly (see 
Figures 12 - 14). 
 
The solution permissible loading and the required shunt injections considering the study bus loading sites (bus 
sites 4 and 5) also show stable performance of the PSO over the BCO and ACO techniques. For the case of the 
PSO and at study bus site 4, the solved permissible loading across all buses is about 180MW while the required 
shunt injections is about 50MVARs (see Tables 2 and 3). For the case of the PSO at study bus site 5, the solved 
permissible loading across all buses is about 250MW while the required shunt injections is about 50MVARs (see 
Tables 4 and 5). 
 
In general, correlation tests performed on the voltage response data generated by the different techniques after 
compensation showed that only the PSO technique gave no significant statistical difference among the 
observations (see Tables 6 and 7). 
 
 
CONCLUSIONS 
 
The problem of voltage collapse from the perspective of optimal permissible loading and shunt compensation 
have been studied in this research study. The primary discoveries in this research study are as follows: 
• SWAMI optimizers exhibit stochastic behavior on their voltage response during compensation. 
• The PSO exhibits the most stable response. 
• The ACO showed promising results to maintain stable voltage response. 
 
From these observations, it may be inferred that the PSO gives the most stable voltage response after stability 
analysis and this is followed by the ACO. It becomes obvious that the PSO should be recommended as a primary 
SWAMI technique for voltage collapse mitigation and compensation. The implications for power system 
researchers are twofold. 
 
First, the optimization technique for a voltage collapse mitigation scheme should be carefully studied and 
chosen. Secondly, the PSO technique should be a key swarming intelligence choice when considering 
alternatives or hybrid solutions for such schemes. 
 
 
APPENDIX 
 

Table A.1. Key PSO Parameters. 
PSO Parameter Default Value 
Population size 10 
Maximum number of iterations (Generations) 5 
Constriction coefficient (Personal and Global) 1.05 
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Inertia weight damping ratio 1 
Table A.2. Key BCO Parameters. 

BCO Parameter Default Value 
Population size 10 
Maximum number of iterations (Generations) 5 
Acceleration coefficient 2.05 

 
Table A.3. Key ACO Parameters. 

ACO Parameter Default Value 
Population size 10 
Maximum number of iterations (Generations) 5 
Sample size 1 
Intensification Factor (Selection Pressure) 0.5 
Deviation-distance ratio 1 
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