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Abstract: Structure-Toxicity Relationships have been studied for a set of 42 

organophosphorous pesticides (OPs) through multiple linear regression (MLR) and 

artificial neural networks (ANN). A model with three descriptors, including: total 

lipophilicity [log (P)], widths radicals R1 [(LR1)] and R2 [(LR2)] has achieved good results 

in phase Training and phase prediction of toxicity [log LD50 (lethal dose 50, Oral rat)]. The 

linear model (MLR: n=40, r²=0.86, s=40 and q2 = 0.66) and non-linear model with a 

configuration [3-6-1] (ANN: r²=0.95, s=0.73 and q2 = 0.17) have proved very successful 

and complementary. The selected descriptors indicate the importance of lipophilicity and 

widths radicals R1 and R2 in the contribution of the toxicity of pesticides derived from OPs 

used in this study. This information is relevant for the design of a new model of non-toxic 

pesticides OPs. 
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1. INTRODUCTION 

 

The pesticide is a limit generic for a variety of classes such as chemical herbicides, fungicides and nematicides. 

The techniques of computer simulation are most effective means potentially offering alternatives to probe 

structure-toxicity relations. The objectives of our study are to provide additional information on the behaviour of 

organophosphorus compounds and set in the future the necessary criteria for designing a model for a new 

generation of organophosphorous pesticides.  

 

The use of quantitative relationships structures QSAR activities currently has considerable attention [1] for 

pharmaceutical needs [2], as well as the study of the toxicological mechanisms of chemical environmental 

pollutants (products Endocrine disrupting phytochemicals) [3]. Today, a large number of families of compounds 

have already been the subject of such research. Among these families are organophosphorus pesticides. 

 

Pesticides especially the organophosphorous (OPs) are the most used in the world of agricultural production. Of 

these, 70% are highly toxic, although they have a low persistence and are easily biodegradable, they are subject 

to ecological concerns because they are toxic to non-target species even at low concentrations. [4]. 

 

In recent years, chemists and biologists have paid great attention to quantitative structure-activity relationships, 

known as QSAR. The development of such relationships successfully predicts certain properties and activities of 

chemical structures without recourse to synthesizing or testing them [5]. 
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Indeed, one of the major concerns of scientists is to have a pesticide that is more effective and less toxic. Only 

the achievement of these objectives will guarantee the development of the pesticide market. It is within the 

framework of this perspective that our approach, which allows not only to distinguish between the variations of 

the toxicity between the different pesticide molecules, but also to establish an effective model on a data bank of 

42 organophosphorus pesticides. 

 

 

2. EXPERIMENTAL SETUP 

 

2.1. Experimental data 

In order to establish our model of quantitative structure-toxicity relationship, we collected a sample, as wide 

possible, of 42 organophosphorous compounds described in FOOTPRINT's Pesicides Properties Database [6], 

with activity values Specific ecotoxicologicals of acute oral toxicity for rats (mammalian test organisms).  

 

All these compounds have the motif [P (o) (o)] as a common chemical structure (Figure 1).  

 

The chemical structures of the series of the organophosphorous compounds studied are grouped in Table 1 with 

the logLD50 values used as a dependent variable. 
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Fig. 1. General Structure of the organophosphorus pesticides: 

R1 = methyl or ethyl; R2 = alkyl, heterocyclic or aromatic groupment; X = O or S. 

 

 

Table 1. Chemical structures of the compounds studied and experimental values of logLD50 (lethal dose 50, 

oral, rat). 

N X R1 R2 log LD50 

(Exp) 

N° X R1 R2 log 

LD50 

(Exp) 

1 S C2H5 

 

1.08 11 S CH 3 

 

3.45 

2  CH 3 

 

0.95 12 S C2H5 

 

1 

3 S 
CH

CH3

CH3 

 

2.43 13 O CH 3 

 

1.48 

4 S CH 3 

 

3.20 14 S C2H5 

 

1.85 

5 S C2H5 

 

1.72 15 S C2H5 

 

2.23 

6 S C2H5 

 

1 16 O CH 3 

 

1.90 
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2.2. Analysis by Multiple Linear Regression (MLR)  

A total of 63 physicochemical descriptors were generated to code each molecule by the molecular modeling pro 

program [7].  

 

The experimental data, containing all the values by n compounds (n = 42), was subjected to Multiple Linear 

Regression analysis [8]. We used two main approaches in the MLR: the stepwise regression approach [9]; and 

the "backword" approach, [10]. The contributions of the relevant descriptors are calculated using the Gore 
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method [11, 12], which excludes a single example of all the data for building the entire test. leave-one-aut .The 

predictive power of the model has been evaluated by the cross-validation method. 

 

 

3. RESULTS AND DISCUSSION 

3.1. Establishment of MLR models  

Given the large number of 63 descriptors used to code each molecule, we subjected our data to Stepwise 

stepwise selection [14, 15, 16], in order to highlight the most relevant descriptors. The two steric parameters 

width of radical R1 [L(R1)], and radical R2 [L(R2)], and lipophilicity [Log P], represent the relevant descriptors 

in the determination of the toxicity of these organophosphorus pesticides studied. The best model obtained by the 

multiple linear regression is the following (Equation 1). 

 

Log (LD50) = (3.858±0.790) + (0.081±0.023)*LogP -(0.938±0.133)* [L(R1)] + (0.257± 0.062)* [L(R2)] 

n = 42; r = 0.84 (r² = 064); s = 0.45; F=29.52 

(1) 

 

The contributions of the parameters [L(R1)], [L (R2)] and Log P are respectively 45.78%, 33.33 and 20.89%. 

The model is statistically significant and accounts for up to 63% of initial information.  

 

The residual standard deviation is relatively small (s = 0.45), it is of the order of the error generally committed in 

biological tests of this type. The large contribution of the width of the substituent R1 reflects the great influence 

of the size of this substituent in particular on the toxicity of organophosphorus pesticides.  

 

To get closer and closer to the experimental error that is generally of the order of 5% and to check the prediction 

limits in our sample, we obtained a new sample of 40 molecules. The application of multiple linear regression to 

this sample leads to equation (2) after elimination of molecules number 39 and number 40 (Equation 2). 

 

Log (LD50)=(1.941±0.064)+ (0.360±0.082)*LogP - (0.581±0.077)* [L(R1)] + 0.273(±0.070)* [L (R2)] 

 

 

(2) 

The statistical quality of the equation is very good, it explains 73% of the total variance, and it’s higher than the 

other models described in the literature if we take into account the number of descriptors used. It explains up to 

73% of the total variance with a standard error "s" much lower than the average error made on the observed 

values of Log (LD50) which is of the order of 0.741 for an interval ranging from 0.66 to 3.45. To show that our 

model is not due to chance, we applied the experiment of changing the column of the dependent variable 

randomly so that each molecule does not find its true activity but the activity of a another molecule, without 

touching the columns of the independent variables.  

 

The result of this test on the sample of 42 molecules shows that the statistical quality of our model decreases 

very remarkably, it goes from r = 0.86, s = 0.40 and F = 32.18 at r = 0.46, s = 0.60 and F = 0.07. This result 

clearly indicates that the descriptors selected for this study describe well the activity of the series of 

organophosphorus compounds. 

 

3.2. Establishment Of non-linear models 
In order to improve the linear model obtained and test the possibility of non-linear effects that may possibly exist 

between the activity and the descriptors of the linear model, we used the artificial neural network. The neural 

network employed therefore has the architecture [3-6-1], (tree neurons in the input layer, six neurons in the 

hidden layer and a neuron in the output layer). 

 

This preliminary study (Table 2) allowed us to conclude that the neural network with the architecture [3-6-1] 

schematized in Figure 2 is able to establish a satisfactory relationship between the relevant descriptors and the 

Log activity (LD50). We observe an improvement in the statistical parameters of the non-linear model (r=0.95 

and s = 0.17) compared to the linear model (r = 0.86 and s = 0.40), suggests the possible existence of non-linear 

relations between the activity and the descriptors. The evaluation of the contribution of the relevant descriptors 

gives the following classification: LogP> L(R1)> L (R2). 

 

n = 40; r = 0.86 (r² = 0.728); s = 0.40; F = 32.18 
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Table 2. Variation of r2 and s with number of neurons. 
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Fig. 2. Description of architectural neural network. 

 

The comparison of this classification with that obtained in the linear model reveals a change of order between 

Log P, L (R1) and L (R2). This change can be explained by the possible existence of a non-linear relationship 

between activity and lipophilicity, which is not the case for widths.  

 

 

4. CONCLUSION 

 

Quantitative Structure Activity Relationship (QSAR) models are expected to play an important role in the risk 

assessment of chemicals on humans and the environment [17]. Because some organophosphorus compounds are 

known for their pesticidal properties [18]. We have established a study of the quantitative relationships between 

the molecular structure and toxicity of a series of organophosphorus pesticides, with the aim of predicting the 

activity of new products at high levels added value. 

 

QSAR models are expected to play an important role in the risk assessment of chemicals on humans [19]. The 

most relevant descriptors were evidenced by stepwise linear multiple regression analysis. The analysis of the 

statistical parameters of models published in the literature shows that our model is more efficient [20, 21, 22]. It 

generated the steric aspect, expressed both by the widths of the radicals R1 and R2 and the however, the nature 

of the heteroatom (X) does not seem to have a decisive effect on the activity of organophosphorus pesticides.  

 

The structure-toxicity relationship model produced during this work can be classified as a predictive model that 

assists in the selective design of new molecules with low toxicity, in the family of organophosphorus 

compounds.  

 

Indeed, the analysis of the schematized model, based on a molecular description of the organophosphorus 

compounds, shows that a low toxicity (high LD50) is associated with a low value in [L(R1)], a global 

lipophilicity and a width [L(R2)] more important. In conclusion, this prediction model makes it possible to avoid 

experimental tests and provide an immediate result. 

 

For future developments, lazy structure–activity relationships [23] will be established and tested algorithms, 

semantic web aware web services, and language bindings, which can serve as building blocks for new algorithms 

and applications. We hope that these facilities will speed up the development cycle of future predictive 

toxicology applications, and will ultimately lead to improved and more relevant applications in this area. 

 

NNC 

f neurons 
s r 

2 0.27564299 0.75056049 

3 0.25787559 0.82837559 

4 0.1948047 0.92550181 

5 0.17503741 0.94251181 

6 0.17354904 0.95147377 

7 0.17417838 0.94901349 
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