AN ENHANCED MULTIMODAL BIOMETRIC SYSTEM BASED ON CONVOLUTIONAL NEURAL NETWORK

Main Article Content

LAWRENCE OMOTOSHO
IBRAHIM OGUNDOYIN
OLAJIDE ADEBAYO
JOSHUA OYENIYI

Abstract

Multimodal biometric system combines more than one biometric modality into a single method in order, to overcome the limitations of unimodal biometrics system. In multimodal biometrics system, the utilization of different algorithms for feature extraction, fusion at feature level and classification often to complexity and make fused biometrics features larger in dimensions. In this paper, we developed a face-iris multimodal biometric recognition system based on convolutional neural network for feature extraction, fusion at feature level, training and matching to reduce dimensionality, error rate and improve the recognition accuracy suitable for an access control. Convolutional Neural Network is based on deep supervised learning model and was employed for training, classification, and testing of the system. The images are preprocessed to a standard normalization and then flow into couples of convolutional layers. The developed multimodal biometrics system was evaluated on a dataset of 700 iris and facial images, the training database contain 600 iris and face images, 100 iris and face images were used for testing. Experimental result shows that at the learning rate of 0.0001, the multimodal system has a performance recognition accuracy (RA) of 98.33% and equal error rate (ERR) of 0.0006%.

Article Details

How to Cite
OMOTOSHO, L., OGUNDOYIN, I., ADEBAYO, O., & OYENIYI, J. (2021). AN ENHANCED MULTIMODAL BIOMETRIC SYSTEM BASED ON CONVOLUTIONAL NEURAL NETWORK. Journal of Engineering Studies and Research, 27(2), 73-81. https://doi.org/10.29081/jesr.v27i2.276
Section
Articles
Author Biographies

LAWRENCE OMOTOSHO

Department of Information and Communication Technology, Osun State University, Osogbo, Osun State, Nigeria

IBRAHIM OGUNDOYIN

Department of Information and Communication Technology, Osun State University, Osogbo, Osun State, Nigeria

OLAJIDE ADEBAYO

Department of Information and Communication Technology, Osun State University, Osogbo, Osun State, Nigeria

JOSHUA OYENIYI

Department of Information and Communication Technology, Osun State University, Osogbo, Osun State, Nigeria