MODELING OF SOLAR RADIATION WITH A NEURAL NETWORK

Authors

  • VALENTIN STOYANOV Faculty of Electrotechnics, Electronics and Automation, University of Ruse, 8 Studentska str., 7017 Ruse, Bulgaria
  • IVAYLO STOYANOV Faculty of Electrotechnics, Electronics and Automation, University of Ruse, 8 Studentska str., 7017 Ruse, Bulgaria
  • TEODOR ILIEV Faculty of Electrotechnics, Electronics and Automation, University of Ruse, 8 Studentska str., 7017 Ruse, Bulgaria

DOI:

https://doi.org/10.29081/jesr.v24i3.55

Keywords:

modeling, solar radiation, neural network

Abstract

Modeling of solar radiation with neural network could be used for real-time calculations of the radiation on tilted surfaces with different orientations. In the artificial neural network (ANN), latitude, day of the year, slope, surface azimuth and average daily radiation on horizontal surface are inputs, and average daily radiation on tilted surface of definite orientation is output. The possible ANN structure, the size of training data set, the number of hidden neurons, and the type of training algorithms were analyzed in order to identify the most appropriate model. The same ANN structure was trained and tested using data generated from the Klein and Theilacker model and long-term measurements. Reasonable accuracy was obtained for all predictions for practical need.

Downloads

Download data is not yet available.

Published

2018-09-18

How to Cite

MODELING OF SOLAR RADIATION WITH A NEURAL NETWORK. (2018). Journal of Engineering Studies and Research, 24(3), 45-50. https://doi.org/10.29081/jesr.v24i3.55